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Calcium and Metabolic Oscillations in Pancreatic Islets: Who’s Driving the Bus?∗

Margaret Watts†, Bernard Fendler‡, Matthew J. Merrins§, Leslie S. Satin§,
Richard Bertram¶, and Arthur Sherman†

Abstract. Pancreatic islets exhibit bursting oscillations in response to elevated blood glucose. These oscillations
are accompanied by oscillations in the free cytosolic Ca2+ concentration (Cac), which drives pulses
of insulin secretion. Both islet Ca2+ and metabolism oscillate, but there is some debate about
their interrelationship. Recent experimental data show that metabolic oscillations in some cases
persist after the addition of diazoxide (Dz), which opens K(ATP) channels, hyperpolarizing β-
cells and preventing Ca2+ entry and Ca2+ oscillations. Further, in some islets in which metabolic
oscillations were eliminated with Dz, increasing the cytosolic Ca2+ concentration by the addition of
KCl could restart the metabolic oscillations. Here we address why metabolic oscillations persist in
some islets but not others, and why raising Cac restarts oscillations in some islets but not others.
We answer these questions using the dual oscillator model (DOM) for pancreatic islets. The DOM
can reproduce the experimental data and shows that the model supports two different mechanisms
for slow metabolic oscillations, one that requires calcium oscillations and one that does not.
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1. Introduction. Pancreatic islets, clusters of electrically coupled endocrine cells, exhibit
bursting oscillations in response to elevated blood glucose levels. These oscillations consist
of periodic episodes of electrical activity followed by quiescence. The electrical oscillations
drive oscillations in the free cytosolic Ca2+ concentration, which in turn mediate pulsatile
insulin secretion from β-cells [2, 3, 24]. Pulsatile insulin secretion appears to be important
for maintaining glucose homeostasis, as it is lost in patients with Type 2 diabetes and their
close, nondiabetic relatives [38, 45, 48]. Pulsatile insulin has also been shown to enhance
insulin action at the liver [39]. There is a long history of mathematical modeling to describe
the complex electrical activity and intracellular Ca2+ dynamics of the β-cells within islets
[6, 13, 11, 12, 21, 29, 47, 49, 50, 52, 53, 59]. More recently, metabolic pathways have been
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included that supplement the electrical and Ca2+ components that were present in the earlier
models [7, 8, 17, 23, 22].

A central question in islet dynamics is whether the metabolic oscillations that have been
observed [1, 4, 14, 27, 30, 31, 34, 35, 43, 46] are self-sustaining or whether they are a result of
oscillations in the cytosolic Ca2+ concentration (Cac). The first hypothesis is motivated by
the observation of glycolytic oscillations in muscle extracts driven by phosphofructokinase-1
enzyme (PFK-1), whose catalytic activity is amplified by its product fructose-1,6-bisphosphate
(FBP) [55, 58, 57]. The muscle isoform of PFK-1 is the dominant one in β-cells, suggesting
that glycolytic oscillations are possible in these cells [56]. The second hypothesis is motivated
by the observation that Ca2+ influences metabolism in several ways. Ca2+ upregulates dehy-
drogenases in the citric acid cycle [15, 40], Ca2+ flux into the mitochondria depolarizes the
mitochondrial membrane [32, 36, 37, 44], and ATP is utilized by Ca2+ ATPases to pump Ca2+

from the cytosol into the endoplasmic reticulum (ER) or out of the cell [16, 33].

Two classes of models have been proposed corresponding to these hypotheses, one in
which the metabolic oscillations are driven by Ca2+ oscillations and one in which the metabolic
oscillations drive the Ca2+ oscillations. In both cases metabolic and Ca2+ oscillations typically
occur together and mutually interact, but only in the second case can metabolic oscillations
occur in the absence of Ca2+ oscillations.

The two classes of models have further been combined into a dual oscillator model (DOM),
in which an electrical oscillator (EO) drives fast Ca2+ oscillations (period < 2 min), and a
glycolytic oscillator (GO) drives slow oscillations (period 2–10 min) [7, 8]. The bifurcation
structure of the DOM was analyzed in [25] to explain how the EO and GO work together
to produce the diverse oscillation patterns observed in islets. The DOM predicts that fast
metabolic oscillations are secondary to Ca2+ oscillations, whereas slow metabolic oscillations
do not require Ca2+ oscillations.

The validity of the two hypotheses for the origin of slow metabolic oscillations was tested
in studies in which the islet β-cells were hyperpolarized by the K(ATP) channel activator
diazoxide (Dz). If Ca2+ oscillations drive metabolic oscillations, then terminating oscillations
in Cac by membrane hyperpolarization should stop metabolic oscillations. In fact, it was
found that islet hyperpolarization terminates metabolic oscillations [30, 35]. However, in a
later study of a large population of islets (101), about one-third of the islets that exhibited
metabolic oscillations (as measured through NAD(P)H fluorescence) continued to oscillate in
Dz [42].

The case in which Dz abolished metabolic oscillations was interpreted using the DOM as
follows. Membrane hyperpolarization abolishes Ca2+ influx through voltage-dependent Ca2+

channels, which eliminates Ca2+ oscillations and decreases the cytosolic Ca2+ concentration.
That in turn reduces the demand for ATP to fuel the Ca2+ pumps, so the ATP concentra-
tion rises to a level that may be sufficient to inhibit glycolysis and thus prevent metabolic
oscillations.

This led to the prediction that increasing the Ca2+ concentration, while preventing it from
oscillating, could restart the metabolic oscillations because it would increase the demand for
ATP to fuel the Ca2+ pumps. The prediction was confirmed—NAD(P)H oscillations were in
fact restored in about half the islets where Dz had eliminated the metabolic oscillations [42].
Thus, the experiments answered one question but raised two new ones. First, when the β-cell
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membrane is hyperpolarized, why do metabolic oscillations persist in some islets but not in
others? Second, when membrane hyperpolarization terminates metabolic oscillations, why
does raising the cytosolic Ca2+ concentration sometimes restart them but sometimes not?

In order to answer these questions, we investigate further the dynamic properties of the
DOM and find that the DOM exhibits two different mechanisms for slowmetabolic oscillations,
one that does not require Ca2+ oscillations (denoted by Ca-Independent or CaI) and one that
can occur only in the presence of Ca2+ oscillations (denoted by Ca-Dependent or CaD). The
slow CaD oscillations are distinct from the fast oscillations described above, in which metabolic
oscillations are driven by Ca2+ oscillations, in that no oscillations can occur if glycolysis is
stationary. In order to facilitate the analysis of the DOM and to identify the essential features,
we simplify the model in several steps, ending up with two coupled, planar fast-slow systems
that interact via fast-threshold modulation [54].

2. Model.

2.1. The dual oscillator model. A complete mathematical and physical description of
the DOM has been published previously [7, 8], so only the key elements and the simplifica-
tions we made will be described here. The DOM consists of three interacting components,
electrical/calcium, glycolytic, and mitochondrial (Figure 1A). It was developed to account
for the three main oscillatory behaviors of islets: fast electrical bursting, which is postulated
to be driven by Ca2+-dependent ion channels; slow glycolytic bursting, driven by glycolytic
oscillations; and compound bursting, in which glycolysis modulates Ca2+-dependent bursting
to form episodes of bursts clustered together [7]. The two latter slow modes correspond to
the slow metabolic oscillations investigated experimentally in [42].

The first component historically was electrical/calcium, consisting of membrane potential,
V ; the Hodgkin–Huxley gating variable for the voltage-dependent K+ channels, n; cytosolic
Ca2+, Cac; and Ca2+ stored internally in the ER, denoted by CaER. The model for the
electrical component was developed in [8].

The electrical activity reflects the metabolic state of the cell through the effects of ATP
and ADP on K(ATP) channels. These were initially considered parameters determined by
glucose concentration, the main physiological driver of β-cell electrical activity and insulin
secretion, but were later made dynamic variables. The metabolic state can be reduced to a
single parameter by assuming that the sum of ATP and ADP is conserved:

(2.1) ADPc + ATPc = Ac,tot.

After entering the cell, glucose is metabolized first anaerobically in glycolysis. It is
phosphorylated to glucose-6-phosphate (G6P) by glucokinase (GK), isomerized to fructose-6-
phosphate (F6P), and then phosphorylated a second time to fructose-1,6-bisphosphate (FBP)
by phosphofructokinase-1 (PFK-1), the key enzyme that controls oscillations. Other reactions
follow downstream of PFK-1, but these are all in equilibrium with FBP and do not contribute
to oscillations. F6P is assumed to be in equilibrium with G6P.
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With the above simplifications, the equations for the glycolytic component are

dG6P

dt
= κ(JGK − JPFK),(2.2)

dFBP

dt
= κ

(
JPFK − 1

2
JGPDH

)
.(2.3)

This formulation was adapted from an earlier model for glycolytic oscillations in muscle
extracts [51].

The glycolytic component takes ADPc as input from the electrical/calcium component
and has as output FBP . It can generate slow oscillations in the absence of Cac oscillations
because of positive feedback onto PFK-1 by FBP and slow negative feedback from depletion
of the substrate G6P. There is also negative feedback by ATP c, but in our model this is a
modulator, not a driver, of oscillations. This differs from earlier models of glycolysis in which
ATPc provided the negative feedback and ADPc provided the positive feedback to drive the
oscillations [26].

The final component describes the reactions in the mitochondria, which aerobically me-
tabolize the carbons from glucose and produce most of the ATP in the cell. The mitochondrial
component has four variables: mitochondrial NADH concentration (NADHm), mitochondrial
ADP concentration (ADPm), mitochondrial calcium concentration (Cam), and the inner mem-
brane potential (Δψm). The mitochondrial calcium concentration is determined by exchange
with Cac, which is calculated in the electrical component. The actual primary input to the
mitochondria from glycolysis is pyruvate, but we use as a surrogate the rate of one of the down-
stream enzymes, glyceraldehyde 3-phosphate dehydrogenase (GPDH), which is in equilibrium
with FBP. That rate satisfies

(2.4) JGPDH = kGPDH

√
FBP/(1μM).

The mitochondrial component of the model was originally developed by Magnus and Keizer
[36, 37] and was simplified in [5].

To close the loop, the mitochondria export ATP to the cytosol in exchange for cytosolic
ADP via the adenine nucleotide transporter (ANT). Flux through the transporter, JANT , is
given by

(2.5) JANT = p19
ATPm/ADPm

ATPm/ADPm + p20
exp

(
Fψm

2RT

)
,

where R is the universal gas constant, F is Faraday’s constant, T is the temperature, and ψm

is the mitochondrial membrane potential, here assumed to be constant. ATPm is eliminated
by assuming conservation of adenine nucleotides in the mitochondria:

(2.6) Am,tot = ADPm +ATPm.

The cytosolic variable ADP c is determined by that exchange together with cytosolic ATP
consumption, notably by Ca2+ pumps that hydrolyze ATP to ADP to transport Ca2+ into
the ER or out of the cell. The hydrolysis rate is modeled as

(2.7) Jhyd = (khydCac + Jhyd,SS)ATPc,
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where khyd is the calcium-dependent component of hydrolysis, and Jhyd,SS is the basal level of
hydrolysis. Through this interaction, Cac influences the rate of glycolysis, which is modulated
by ADPc, as noted above.

Glycolytic
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Figure 1. Successive reductions of the DOM. (A) The three interconnected components of the DOM. (B)
Reduced DOM with simplified mitochondria and ADPc set to steady state. (C) Dual planar system with a
simplified calcium component for phase-plane analysis. (D) Glycolytic oscillations forced by Cac. See the text
for details.

2.2. The reduced dual oscillator model. In order to analyze the system, we simplified
the DOM while preserving its main characteristics (Figure 1B). We followed along the lines of
an earlier, simpler version of the DOM [8], in which NADHm, Cam, and ΔΨm were neglected,
and ADPc was determined solely by Cac. However, in the reduced DOM, we used curve
fitting to match the input-output relationship of the more complex mitochondrial component
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Table 1
Parameters for the reduced DOM.

gK(CA) = 450 pS kPMCA = 0.3 gK(ATP ) = 17000 pS

q1 = 0 q2 = 12700 q3 = 5
κ = 0.003 ψm = 164 mV εer = 3
p19 = 0.35 p20 = 2 F/RT = 0.037 mV−1

depicted in Figure 1A, as that was the first model to exhibit CaD oscillations. We did retain
ADPm, allowing the ANT to determine ADP c, but set it to steady state:

(2.8) ADPm,SS = q1Cac + q2 exp(−JGPDH/q3),

where JGPDH is an increasing function of FBP (2.4). The term q1Cac is a simplification of
the effect of calcium uptake by the mitochondria to inhibit respiration by shunting the mito-
chondrial membrane potential, as first modeled by Keizer and Magnus [28]. The second term
represents the input from glycolysis. We include the first term for conceptual completeness
and possible future use, but we found that it was not necessary for studying the phenomena of
interest in this paper because it is redundant to the cytosolic effect of Cac on ATP hydrolysis
(2.7). Thus, q1 was set to 0. Therefore, the reduced DOM allows input from the mitochondria
but with the mitochondrial variables determined by algebraic equations.

Finally, ADPc was set to steady state. In the full DOM [7], ADPc satisfies

(2.9)
dADP c

dt
= Jhyd − δJANT ,

where δ is the mitochondrial/cytosolic volume ratio. Setting the right-hand side of (2.9) to
zero and solving for ADPc gives

(2.10) ADPc,SS = Ac,tot − δ

(
JANT

khydCac + Jhyd,SS

)
,

where JANT is given by (2.5) and the conservation condition (2.1) was used.

Combining (2.7), (2.8), and (2.10), ADPc, which increases K(ATP) channel open prob-
ability, falls with glycolytic activity and rises with Cac. These are the necessary, but not
sufficient, conditions for the model to exhibit CaD oscillations.

Parameter values are as in [7] unless otherwise noted. Equations (2.8) and (2.10) were
added to that model, and the differential equation for ADPc was removed. Details of the equa-
tions not discussed here can be found in [7] as well as in the XPP ODE files (see 92019 01.zip
[local/web 1.99MB]). With these changes, the model can be described by the scheme in Figure
1B. The mutual dependences of the individual variables within the components are sketched

92019_01.zip
http://epubs.siam.org/doi/suppl/10.1137/130920198/suppl_file/92019_01.zip
arthurs
Inserted Text
Parameter changes and additional parameters are indicated in Table 1.
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in the following equations:

dV

dt
= f1(V, n, Cac; ADPc,SS),

dn

dt
= f2(V, n),

dCac
dt

= f3(V, Cac, CaER),

dCaER

dt
= f4(Cac, CaER),

dG6P

dt
= f5(G6P, FBP ; ADPc,SS),

dFBP

dt
= f6(G6P, FBP ; ADPc,SS),

ADPc,SS = f7(Cac, FBP ).

ADPc,SS, the glue that binds the electrical and metabolic components together, is a decreasing
function of FBP and an increasing function of Cac. Note that if Cac is fixed, then the
glycolytic component becomes a stand-alone two-variable system, which we exploit later to
carry out phase-plane analysis of the behavior of metabolism.

2.3. Dual phase-plane model. As a final simplification, we reduce the EO to a planar
system as well, replacing it with a FitzHugh–Nagumo-like system for the two slow variables
of the EO, Cac and CaER:

dCac
dt

= B (Cac − E)(Cac − β)(a− Cac)−D CaER + FBP,(2.11)

dCaER

dt
= ε(Cac − γ CaER),(2.12)

with the parameter values listed in Table 2. Whereas in the DOM increased cytosolic ATP
closes K+ channels, which depolarizes the plasma membrane, opens voltage-dependent Ca2+

channels, and increases Cac, in (2.11) we accomplish the same purpose with the additive FBP
term, diagrammed in Figure 1C. With these simplifications, the dual phase-plane model allows
us to carry out phase-plane analysis of the EO and the GO jointly.

Table 2
Parameter values for the dual phase-plane model.

B = 800 a = 0.2
D = 0.03 γ = 0.001
β = 0.5 ε = 0.02
κ = 0.004 E = 0.15

2.4. Solution methods. The differential equations were solved numerically with the vari-
able step size CVODE method with tolerance 10−9 implemented in the XPPAUT software
package [19]. The full set of equations and expressions is contained in the XPP ODE files (see
92019 01.zip [local/web 1.99MB]).

92019_01.zip
http://epubs.siam.org/doi/suppl/10.1137/130920198/suppl_file/92019_01.zip
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3. Results.

3.1. Metabolic oscillations can persist without Ca2+ oscillations. The first test of the
reduced DOM (Figure 1B) is whether it can reproduce the findings of [42] that metabolic
oscillations sometimes persist and sometimes are terminated by abolishing calcium entry with
the K(ATP) channel opener Dz. Figure 2 simulates the two experimentally observed responses
to Dz. The application of Dz is simulated by clamping the conductance of the ATP-sensitive
K+ (K(ATP)) conductance to a high constant level independent of ADPc. Since the reduced
model does not have an equation for NADH, the concentration of FBP is plotted to show the
metabolic oscillations. Metabolic oscillations were either lost (Figure 2B) or persisted with a
reduced amplitude (Figure 2A). The only difference between these two cases is the rate of the
enzyme glucokinase (JGK), which converts glucose into G6P. Islet to islet heterogeneity in the
levels of the glucokinase protein is not unlikely and would result in different JGK parameter
values.

The second test is whether the reduced model can simulate the restoration of the oscilla-
tions in Figure 2B when the Cac level is raised. Figure 3A extends Figure 2B in time, and at
t = 120 min, the K+ equilibrium potential is raised from −75 mV to −50 mV, simulating the
addition of KCl. This raises Cac and restores the oscillations (Figure 3A). Therefore, these
metabolic oscillations do not require Ca2+ oscillations. They do, however, depend on the
intracellular Ca2+ level. However, metabolic oscillations were not restored in all cases (Figure
3B).
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Figure 2. Effects of Dz on Ca2+ and metabolic oscillations with the reduced DOM. (A) When JGK = 0.143
μM ms−1, metabolic oscillations are sustained. (B) When JGK = 0.153 μM ms−1, metabolic oscillations are
terminated.
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Figure 3. Metabolic oscillations that are terminated with Dz can be restored in some cases (A) but not
others (B). (A) Continuation of simulation in Figure 2B with KCl added at t = 120 min, simulated by raising
the K+ reversal potential from −75 mV to −50 mV. Cac rises but remains nonoscillatory, and FBP oscillations
are restored. (B) FBP oscillations cannot be restored when JGK is increased slightly (0.19 μM ms−1).

Having established that the reduced DOM captures the key behaviors of the full DOM
(Figure 1A), we can use it to understand why the Ca2+ concentration affects metabolic os-
cillations. We approached this first by isolating the GO, removing the electrical component,
and treating Cac as a fixed parameter. The isolated GO system thus consists of (2.2), (2.3),
with ADPc and ATPc determined by (2.10) and (2.1) (Figure 1D).

We used the isolated GO (Figure 1D) to construct a two-parameter bifurcation diagram
in the JGK -Cac plane. The curves in Figure 4 indicate the locations of Hopf bifurcations (HB)
and saddle node of periodics bifurcations (SNP). The two leftmost red and blue lines were
determined by the rightmost (red) and leftmost (blue) values of JGK for the HBL curve. The
rightmost value is where the HBL curve intersects the JGK axis. The leftmost value is the
asymptote that the HBL curve approaches as JGK is lowered. Likewise, the two rightmost
red and blue lines were determined by the leftmost (red) and rightmost (blue) values of JGK

for the SNPR. The leftmost value is where the SNPR curve intersects the JGK axis. The
rightmost value is the maximum value of JGK on the SNPR curve before it turns back to the
left above where the graph ends. In between the two HB curves, metabolic oscillations are the
only stable structure, but between HBR and SNPR there is bistability between a steady state
and an oscillation. In the region between the vertical red lines, metabolism is oscillatory, and
since Cac is fixed, these are CaI oscillations. The case of Figure 2A, indicated by the open
square in Figure 4, lies in the CaI region. For that value of JGK (0.143 μM ms−1), metabolic
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oscillations occur for any fixed value of Cac. In contrast, the case of Figure 3A, indicated by
the open and closed circles in Figure 4, lies at a value of JGK (0.153 μM ms−1), for which
metabolic oscillations occur only for Cac sufficiently large. When the cell is hyperpolarized
with Dz, Cac ≈ 0.023 μM, which is outside the region of CaI oscillations (open circle), and the
oscillations are lost. Raising Cac to ≈ 0.130 μM with KCl restores the oscillations because
the system moves inside the region of CaI oscillations (black circle). This case lies in the
conditional CaI region, bounded by the red and blue vertical lines. The case of Figure 3B is
indicated by the open and closed triangles in Figure 4. For that value of JGK (0.19 μM ms−1),
metabolic oscillations cannot occur for any fixed value of Ca2+. However, the full system, with
EO and GO, does oscillate in the absence of Dz, and these are thus CaD oscillations. For
some cases of conditional CaI oscillations, Ca2+ must be raised to unphysiological levels to
get oscillations. In these cases, the oscillations may not be distinguishable in practice from
CaD oscillations.

More precisely, the CaD region in Figure 4 shows where CaD oscillations may exist.
Whether they actually exist depends on the properties of the EO. In other words, the bound-
aries between CaI, conditional CaI, and CaD can be determined from the properties of the
GO alone, but the actual existence of oscillations in the full system depends on both the GO
and the EO.
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Figure 4. Two-parameter bifurcation diagram of the glycolytic subsystem illustrating the region of Ca2+

independent (CaI) oscillations. The open square corresponds to Figure 2A after the addition of Dz, the open
circle corresponds to Figure 3A, and the open triangle corresponds to Figure 3B. The filled circle corresponds
to Figure 3A after KCl is raised to restore oscillations, and the closed triangle corresponds to Figure 3B. The
left set of vertical dashed lines are the leftmost (blue) and rightmost (red) JGK values of the HBL curve, while
the right set of vertical dashed lines are the leftmost (red) and rightmost (blue) JGK values of the SNPR curve.
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Note finally that Figure 4 explains the results of Figures 2 and 3, but cannot tell us
whether the metabolic oscillations observed experimentally in [42] that were not restored by
the addition of KCl were CaD or conditional CaI. For example, the level of Cac achieved by
raising KCl may have been too low to put the system into the oscillatory region.

3.2. Analysis of CaD oscillations. Examination of the nullclines for the isolated GO
(Figure 1D) in theG6P -FBP phase plane is sufficient to explain why CaI oscillations disappear
as JGK is increased. The FBP nullcline is S-shaped, and the glycolytic subsystem oscillates
when the nullclines intersect on the middle branch, provided G6P is sufficiently slow. The
intersection lies on the middle branch for the parameter values that correspond to the region
of CaI metabolic oscillations in Figure 4 (not shown). However, raising JGK raises the G6P
nullcline so that it intersects the upper branch of the FBPnullcline. Thus, for a fixed value of
Cac the GO can no longer oscillate (Figure 5B). The right boundary of the CaI region (curve
SNPR in Figure 4) has positive slope because of the competition, JGK and Cac: JGK moves
the steady state toward the upper branch, whereas Cac moves it back toward the middle
branch.

CaD oscillations by definition require variation in Cac, as the GO does not oscillate for
Cac fixed. First we consider the simple case of Ca2+-dynamics imposed by external forcing so
that we may analyze glycolosis in a planar system. In Figure 5, the GO is forced by a square
wave oscillation in Cac (Figure 5A).

The effect of Cac on the GO is mediated by Ca2+-dependent consumption of ATP (2.9),
which activates PFK-1. As the term JPFK appears in both (2.2) and (2.3), the FBP and G6P
nullclines both depend on Cac. Figure 5B shows two FBP (green) and two G6P (orange)
nullclines. The solid nullclines are for high Cac, and the dashed ones are for low Cac. The
steady state for high Cac lies to the left of that for low Cac because the increased activity of
PFK-1 increases consumption of G6P .

If Cac and FBP start out low, then the phase point heads for the steady state on the
right. Before it gets there, however, Cac jumps up, causing the nullclines to jump to the left.
The dashed curve shows where the phase point would have gone had Cac remained low. The
phase point now has to go further up and around to reach the new steady state, producing
a pulse of FBP. Before it reaches the high-Cac steady state, Cac jumps down, moving the
steady state back to the right. Thus, the phase point chases two different steady states that
move as Cac changes (see 92019 02.gif [local/web 725KB]). Without these jumps in Cac, the
glycolytic subsystem with CaD parameters would not oscillate. We now explore whether the
jumping nullcline picture also applies to the autonomous system.

With the EO added back in place of Cac (i.e., the reduced DOM, Figure 1B), the same
type of behavior in the GO phase plane is found (see 92019 03.gif [local/web 742KB]). A better
understanding of the interdependency of the EO and GO subsystems in the CaD region is
obtained by using the dual phase-plane reduction described in section 2.3 (Figure 1C). This
allows us to analyze the EO as well as the GO in the phase plane.

Figures 6A and B show the oscillations produced in Cac and FBP , respectively. Figure 6C
shows the CaER-Cac plane, and Figure 6D shows the G6P -FBP phase plane. As in Figure
5B, the FBP nullcline is in green and the G6P nullcline is in orange, and the steady state
moves from right to left as Cac increases. The Cac nullcline (green) is a cubic function of

92019_02.gif
http://epubs.siam.org/doi/suppl/10.1137/130920198/suppl_file/92019_02.gif
92019_03.gif
http://epubs.siam.org/doi/suppl/10.1137/130920198/suppl_file/92019_03.gif
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Figure 5. Forcing of the glycolytic subsystem with JGK = 0.19 μM ms−1. (A) Cac is a square-wave
oscillation. (B) The phase plane for the GO. The GO chases two different steady states that switch as Cac

jumps from high to low. The FBP (green) and G6P (orange) nullclines move to the left as Cac increases. The
trajectory is solid black; the dashed black line indicates that the phase point would have gone to the low Cac

steady state if Cac had not jumped.

Cac (see (2.11)) and is shown dashed for low FBP and solid for high FBP . The Cac nullcline
moves from left to right as FBP increases. To ensure that the EO cannot oscillate on its own,
parameters are chosen such that the phase point is on either the lower branch or the upper
branch of the Cac nullcline, and the Caer nullcline never intersects the Cac nullcline solely on
the middle branch. Thus, both the EO and GO are excitable, not oscillatory.

Panels C and D show how CaD metabolic oscillations emerge. If FBP and Cac start out
low, the GO steady state is on the right, and the EO steady state is on the left. As the GO
approaches its steady state (red section), FBP rises. If parameters are chosen appropriately,
this causes the Cac nullcline to jump to the right just before the EO reaches its steady state.
Cac in turn jumps up (left blue section), causing the steady state of the GO to move to the
left. Now, as in Figure 5B, the EO trajectory flows up and to the right to approach the new,
high-Cac steady state (black section). As the GO approaches its new steady state, FBP starts
to decrease (black section). This decrease moves the Cac nullcline back to the left, and Cac

decreases (right blue section). Finally, the steady state of the GO is on the right, and the
combined system is back in its initial configuration (see 92019 04.gif [local/web 1.12MB]).

Figure 7A shows the one-parameter bifurcation diagram with respect to JGK for the
reduced DOM (Figure 1B). The dividing lines between CaI, conditional CaI, and CaD oscilla-
tions are repeated from Figure 4. (For simplicity, we label only the rightmost divisions, as we
never observed CaD for low JGK .) As JGK is increased, the amplitude of the metabolic oscil-

92019_04.gif
http://epubs.siam.org/doi/suppl/10.1137/130920198/suppl_file/92019_04.gif
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Figure 6. Phase plane analysis of the dual planar model. The GO is coupled to a FitzHugh–Nagumo-like
oscillator consisting of Cac and CaER in place of the original EO. (A) Cac oscillations. (B) FBP oscillations.
(C) Phase plane for the EO. The Cac nullcline is cubic (green) and moves to the right as FBP increases. The
CaER nullcline is linear (orange). (D) Phase plane for the GO. The FBP (green) and G6P (orange) nullclines
move to the left as Cac increases. The trajectories for the EO and GO are in black (JGK=0.19 μM ms−1).

lations increases, but there is no qualitative change between the various regimes. Figure 7B
shows the bifurcation diagram for the dual phase-plane model (Figure 1C). This diagram looks
very similar to the bifurcation diagram for the reduced system (Figure 7A), suggesting that
the analysis for the dual phase-plane model can be applied to the reduced system.

The periods further reinforce the similarities between both models. Figure 8 shows the
period vs. JGK for the reduced DOM and the dual phase-plane model. The periods are
similar quantitatively and in both models are relatively flat apart from a narrow strip near
the threshold on the left. As with the amplitude (Figure 7), there is no sharp transition
between CaI and conditional CaI or between conditional CaI and CaD. Setting aside the low
JGK values with highest period, it would be difficult to distinguish these patterns on the basis
of period.

3.3. Comparison with experimental data. We returned to the experimental data from
[42] to examine the periods of islets in which oscillations survived Dz (CaI), were lost but
restored with KCl (conditional CaI), or were lost but not restored (could be CaD or conditional
CaI) (see Figure 9A). There is a statistically significant difference between the three groups
(p = 0.04 for one-way ANOVA) as well as the pairwise comparison between those that survived
and those that were restored (p = 0.03). The data are skewed, however, and there are no
significant differences if the highest outlying values of the “Survived” group are excluded, or
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Figure 7. Bifurcation diagram for the reduced DOM (A) and the dual planar model (B).

if the nonparametric Kruskal-Wallis test is used. We discard the outliers and conclude that
in both the model (Figure 8) and the data (Figure 9A) there is no sharp transition between
the three cases.

However, there is no reason to believe that the outlying period values in the data are
invalid, as we do not expect the periods to be normally distributed in light of the steep period
vs. JGK relationship near threshold in the model. Similarly, large periods are found scattered
in the experimental islet literature, especially at near-threshold glucose concentrations. It is
thus tempting to identify the longest-period data points from the experiments with the low
JGK cases from the model.

Figure 9A shows the distribution of periods of NAD(P)H oscillations from mouse islets
under three different conditions. The first group (Survived) reflects periods from islets in
which oscillations persisted when the membrane was hyperpolarized with Dz. Note that the
period plotted is that of the NAD(P)H oscillations prior to Dz application. The second group
(Restored) reflects periods from islets whose oscillations were eliminated by Dz but were
restored upon membrane depolarization with KCl. The final group (Killed) is from islets
whose oscillations were eliminated by Dz and could not be subsequently restored by KCl
application. Differences in the mean periods across the three groups were not statistically
significant.

Figure 9B shows period distributions using synthetic data from the reduced DOM. It was
obtained by sampling JGK values over a Gaussian distribution centered at 0.1575, which is
between the red and blue lines in Figure 8. This produces a sampling of CaI, conditional CaI,
and CaD oscillations. These are analogous to the Survived, Restored, and Killed islet groups,
respectively. The synthetic distributions qualitatively resemble the experimental distributions,
including the long tail of high period points. We note two caveats about the interpretation.
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Figure 8. Periods for the reduced DOM (filled circles) and the dual phase-plane model (open circles) as a
function of JGK .

First, the experimental group, Killed, could represent CaD or conditional CaI oscillations, as
we do not know whether those islets would have oscillated at a different level of Cac. Second,
we have no information about JGK in the experiments, and, even if we did, the response likely
depends as well on other parameters that are unknown.

We remark that the bifurcation diagram of the reduced DOM (Figure 7A) seems to suggest
that CaI oscillations should be the most common, whereas these were observed in a minority of
cases in [42]. The discrepancy is explained by noting that the CaI region in Figure 7A consists
of a wide range of JGK values, which presumably correspond to both low and high glucose
levels, but all the experiments were carried out in 11.1 mM glucose, a strongly stimulatory
level. The fact that a few islets nonetheless exhibited very long periods, which in the model
correspond to low JGK values, likely reflects heterogeneity in levels of glucokinase expression
or other cellular parameters.

4. Discussion. Experimental evidence has shown that metabolic oscillations in pancreatic
islets can persist in the absence of Cac oscillations, although they can depend on the level of
fixed Cac (Figure 3) [42]. The dual oscillator model (DOM) supports the above distinction,
which depends on the level of glucokinase activity (JGK ; see Figures 4 and 7A). However,
models in which Ca2+ oscillations are obligatory for metabolic oscillations cannot explain the
full set of experimental observations. For example, in the Keizer–Magnus model [28] and
the models of Fridlyand, Ma, and Philipson [22], Fridlyand, Tamarina, and Philipson [23],
Cha et al. [10], and Diederichs [17], inhibiting Ca2+ oscillations invariably abolishes metabolic
oscillations. In contrast to these models, the DOM has a glycolytic oscillator (GO) in addition
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Figure 9. Periods observed in islets [42] (A) and synthetic data for the reduced DOM (B). Synthetic data
generated by taking a Gaussian distribution of JGK values with mean 0.1575 and standard deviation 0.0475.
The horizontal lines represent mean values.

to the electrical oscillator (EO), and glycolytic oscillations can persist in the absence of Ca2+

oscillations. We have termed these Ca2+-Independent (CaI) oscillations.

However, in some cases, metabolic oscillations are terminated by blocking Ca2+ entry. In
some such cases the oscillations can be restored by raising the Ca2+ concentration while leaving
Ca2+ nonoscillatory [42], and the DOM can account for that response if the islets lie in the
regime where CaI oscillations exist only for a subset of Cac levels (conditional CaI oscillations;
see Figure 7A). In other cases, the oscillations were not restored, possibly because the Ca2+

concentration did not fall in the oscillatory range of the GO, as suggested by Figure 4, or
because some metabolic oscillations do depend on Ca2+ oscillations. Such CaD oscillations
can also be accommodated within the framework of the DOM (Figure 7A).

These oscillations are not noticeably different in amplitude (Figure 7A) or frequency (Fig-
ure 8) from CaI oscillations, in agreement with experimental observations (Figure 9).

The geometric basis for CaD oscillations is shown in Figure 6 using the dual phase-plane
model. The transition from CaI to CaD occurs when the steady state of the isolated GO
moves from the middle branch of the FBP nullcline to the upper branch, making it excitable.
The EO was also made excitable to conform to the fact that the EO in the DOM is not capable
of generating slow oscillations by itself. CaD oscillations occur when the EO and GO push
each other between their low and high states reciprocally.

The biophysical basis of CaD oscillations in all versions of the model studied here is the
effect of increased Cac to lower ATPc and thereby activate PFK-1, and of reduced Cac to
deactivate PFK-1. This effect of Cac was confirmed experimentally in a recent paper, which
showed by direct imaging of ATP c that KCl lowers ATP c and Dz raises it, and that the
changes are large, comparable to those that occur during oscillations of Cac and ATP c [33].

In the model, the active phase is triggered by a rise in FBP , which leads to a rise in the
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ATP/ADP ratio and thereby closure of K(ATP) channels and increased Cac. That in turn
amplifies the rise in FBP . The downstroke of FBP is likewise amplified by the fall in Cac.
These features apply to both the CaI and CaD regimes, but in the CaD regime, the rise in
FBP at the end of the silent phase is not by itself sufficient to initiate an active phase. It
may, however, raise Cac sufficiently to provide additional boost to FBP and trigger the next
active phase. The same applies to the triggering of the next silent phase at the end of the
active phase, but with the directions reversed.

The scenarios above are specific for islets and the DOM, but oscillations mediated by
coupled excitable systems that interact via jumping nullclines are well known in neuroscience
under the name fast threshold modulation (FTM) [54]. FTM was originally conceived as
a way to describe synaptic coupling and synchrony between two or more neurons, but the
essential element of one oscillator causing the nullclines of another to jump is general and
can occur with two dissimilar oscillators that are coupled by one or more common variables
within a single cell. Another system that appears to be governed by FTM between two
internal subsystems is a model for Ca2+ oscillations in GnRH neurons [18]. In that model
an excitable fast electrical subsystem coupled to an excitable slow Ca2+ subsystem consisting
of Cac, CaER, and a superslow Ca2+-activated K+ channel produces bursting oscillations.
Making the electrical subsystem excitable rather than oscillatory is critical for allowing that
model to reproduce the experimentally observed bursts, which have very long silent phases.
Another recent model for GnRH neurons also involves FTM [60].

The bifurcation structure of the DOM has been studied previously [25], but with different
methods and different aims. In that analysis, either the EO or the GO was oscillatory or both
were oscillatory. The EO oscillations were studied as a function of the slow variable ADPc,
viewed as a parameter supplied by the GO. The oscillations of the GO, consisting of ADPc,
Cac, and CaER, were studied as a function of Cac supplied by the EO. Those bifurcation
diagrams were overlapped to expose the mechanisms of fast, slow, and compound oscillations
and their modulation by glucose concentration. The slow variation of reciprocally controlled
parameters of the two oscillatory subsystems could be called “slow threshold modulation.”
In contrast, the CaD oscillations studied here depend crucially on transient behavior, rather
than the slowly modulated fixed points and limit cycles studied in [25].

Another aspect of β-cell models that is closely related to slow threshold modulation is
phantom bursting [6, 9]. In phantom bursting there are two slow variables, s1 and s2, where
s2 is much slower than s1. If the fast (electrical) subsystem is oscillatory with respect to s1,
relatively fast bursting is obtained. If the fast subsystem is excitable with respect to s1, s2
may be able to sweep the combined fast variable-s1 subsystem across its saddle node and
homoclinic bifurcations to produce much slower bursting.

We believe that the analysis presented here using the reduced DOM applies to the full
DOM for several reasons. First, both models exhibit the same key behaviors, including fast,
slow, and compound oscillations. Second, the bifurcation diagram of the full DOM (not shown)
is very similar to that of the reduced DOM, provided that kPMCA and εER are chosen suitably.
The full DOM does not show true CaD oscillations, however, only CaI and conditional CaI.
This difference appears to be a result of setting the mitochondrial variables in the reduced
DOM to steady state. Importantly, however, restoring metabolic oscillations in the full DOM
in many cases requires Cac levels much higher than the physiological range [20]. Whereas in
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the reduced model we can set Cac arbitrarily, in real islets such levels would not be attainable
by raising KCl, and hence those CaI oscillations would not be distinguishable from CaD
experimentally.

The final question is whether the model accounts for the varied responses of real islets,
in particular whether the oscillations terminated by Dz that could not be restored by KCl
were conditional CaI oscillations or CaD oscillations. The bifurcation diagram of the reduced
DOM (Figure 7A) indicates that the CaD regime is comparable in size to the conditional CaI
regime. Since conditional CaI oscillations have been shown to exist, it seems likely that CaD
oscillations also exist. A recent paper in which ATP c oscillations were measured showed that
Cac has large effects on ATP c, at least in the subplasma-membrane space [33], which makes
CaD oscillations plausible.

Given that there is no clear-cut difference in period and amplitude between CaD and CaI,
to distinguish them one would have to exhaustively test restoration of oscillations with many
values of KCl concentration. Alternatively, one could try to trace a path through the two-
parameter diagram (Figure 4) by titrating glucose and KCl. It is technically difficult, though
perhaps not impossible, to maintain recordings long enough in any given islet to do either of
these.

To end on a note of hope, and point to how the modeling and mathematical analysis
of the DOM are driving innovative biology, we have developed a method to measure FBP
oscillations [41]. This opens the possibility of testing directly whether glycolytic oscillations
in β-cells conform to the model predictions.

REFERENCES

[1] E. K. Ainscow and G. A. Rutter, Glucose-stimulated oscillations in free cytosolic ATP concentration
imaged in single islet β-cells, Diabetes, 51 (2002), pp. S162–S170.

[2] R. M. Barbosa, A. M. Silva, A. R. Tome, J. A. Stamford, R. M. Santos, and L. M. Rosario,
Control of pulsatile 5-HT/insulin secretion from single mouse pancreatic islets by intracellular calcium
dynamics, J. Physiol. Lond., 510 (1998), pp. 135–143.

[3] R. M. Bergstein, Slow and fast oscillations of cytosolic Ca2+ correspond to pulsatile insulin release,
Am. J. Physiol., 268 (1995), pp. E282–E287.

[4] P. Bergsten, J. Westerlund, P. Liss, and P. O. Carlsson, Primary in vivo oscillations of
metabolism in the pancreas, Diabetes, 51 (2002), pp. 699–703.

[5] R. Bertram, M. G. Pedersen, D. S. Luciani, and A. Sherman, A simplified model for mitochondrial
ATP production, J. Theor. Biol., 243 (2006), pp. 575–586.

[6] R. Bertram, J. Previte, A. Sherman, T. A. Kinard, and L. S. Satin, The phantom burster model
for pancreatic β-cells, Biophys. J., 79 (2000), pp. 2880–2892.

[7] R. Bertram, L. Satin, M. G. Pedersen, D. Luciani, and A. Sherman, Interaction of glycolysis
and mitochondrial respiration in metabolic oscillations of pancreatic islets, Biophys. J., 92 (2007),
pp. 1544–1555.

[8] R. Bertram, L. Satin, M. Zhang, P. Smolen, and A. Sherman, Calcium and glycolysis mediate
multiple bursting models in pancreatic islets, Biophys. J., 87 (2004), pp. 3074–3087.

[9] R. Bertram and A. Sherman, A calcium-based phantom bursting model for pancreatic islets, Bull.
Math. Biol., 66 (2004), pp. 1313–1344.

[10] C. Y. Cha, Y. Nakamura, Y. Himeno, J. Wang, S. Fujimoto, N. Inagaki, Y. E. Earm, and

A. Noma, Ionic mechanisms and CA2+ dynamics underlying the glucose response of pancreatic beta
cells: a simulation study, J. Gen. Physiol., 138 (2011), pp. 21–37.



CALCIUM AND METABOLIC OSCILLATIONS IN ISLETS 19

[11] T. R. Chay, Electrical bursting and luminal calcium oscillation in excitable cell models, Biol. Cybern.,
75 (1996), pp. 419–431.

[12] T. R. Chay, Effects of extracellular calcium on electrical bursting and intracellular and luminal calcium
oscillations in insulin secreting pancreatic β-cells, Biophys. J., 73 (1997), pp. 1673–1688.

[13] T. R. Chay and J. Keizer, Minimal model for membrane oscillations in the pancreatic β-cell, Biophys.
J., 42 (1983), pp. 181–190.

[14] H. F. Chou, N. Berman, and E. Ipp, Oscillations of lactate released from islets of Langerhans: Evidence
for oscillatory glycolysis in β-cells, Am. J. Physiol., 262 (1992), pp. E800–E805.

[15] V. N. Civelek, J. T. Deeney, G. E. Fusonie, B. E. Corkey, and K. Tornheim, Oscillations
in oxygen consumption by permeabilized clonal pancreatic β-cells (HIT) incubated in an oscillatory
glycolyzing muscle extract, Diabetes, 46 (1997), pp. 51–56.

[16] P. Detimary, P. Gilon, and J. C. Henquin, Interplay between cytoplasmic Ca2+ and the ATP/ADP
ratio: A feedback control mechanism in mouse pancreatic islets, Biochem. J., 333 (1998), pp. 269–274.

[17] F. Diederichs, Mathematical simulation of membrane processes and metabolic fluxes of the pancreatic
β-cell, Bull. Math. Biol., 68 (2006), pp. 1779–1818.

[18] W. Duan, K. Lee, A. Herbison, and J. Sneyd, A mathematical model of adult GnRH neurons in
mouse brain and its bifurcation analysis, J. Theor. Biol., 276 (2011), pp. 22–34.

[19] B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for
Researchers and Students, SIAM, Philadelphia, 2002.

[20] B. J. Fendler, II, Synchronization of Pancreatic Islets: A Quantitative Investigation of Nonlinear
Oscillations in the Endocrine Pancreas, Ph.D. thesis, Florida State University, Tallahassee, FL, 2009.

[21] L. E. Fridlyand, D. A. Jacobson, A. Kuznetsov, and L. H. Philipson, A model of action potentials
and fast Ca2+ dynamics in pancreatic β-cells, Biophys. J., 96 (2009), pp. 3126–3139.

[22] L. E. Fridlyand, L. Ma, and L. H. Philipson, Adenine nucleotide regulation in pancreatic β-cells:
Modeling of ATP/ADP-Ca2+ interactions, Am. J. Physiol. Endocrinol. Metab., 289 (2005), pp. E839–
E848.

[23] L. E. Fridlyand, N. Tamarina, and L. H. Philipson, Modeling Ca2+ flux in pancreatic β-cells:
Role of plasma membrane and intracellular stores, Am. J. Physiol. Endocrinol. Metab., 285 (2003),
pp. E138–E154.

[24] P. Gilon and J. C. Henquin, Influence of membrane potential changes on cytoplasmic Ca2+ concen-
tration in an electrically excitable cell, the insulin-secreting pancreatic β-cell., Am. J. Physiol., 268
(1992), pp. 20713–20720.

[25] P. Goel and A. Sherman, The geometry of bursting in the dual oscillator model of pancreatic β-cells,
SIAM J. Appl. Dyn. Syst., 8 (2009), pp. 1664–1693.

[26] A. Goldbeter and R. Lefever, Dissipative structures for an allosteric model: Application to glycolytic
oscillations, Biophys. J., 12 (1972), pp. 1302–1315.

[27] L. Juntii-Berggren, D. L. Webb, P. O. G. Arkhammar, V. Schultz, E. K. H. Schweda, K. Torn-

heim, and P. O. Berggren, Dihydroxyacetone-induced oscillations in cytoplasmic free Ca2+ and the
ATP/ADP ratio in pancreatic β-cells at substimulatory glucose, J. Biol. Chem., 278 (2003), pp. 40710–
40716.

[28] J. Keizer and G. Magnus, ATP-sensitive potassium channel and bursting in the pancreatic β cell,
Biophys. J., 56 (1989), pp. 229–242.

[29] J. Keizer and P. Smolen, Bursting electrical activity in pancreatic β cells caused by Ca2+-and voltage-
inactivated Ca2+ channels, Proc. Nat. Acad. Sci. U.S.A., 88 (1991), pp. 3897–3901.

[30] R. T. Kennedy, L. M. Kauri, G. M. Dahlgren, and S. K. Jung, Metabolic oscillations in β-cells,
Diabetes, 51 (2002), pp. S263–S161.
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