Excitable Bursting in the Rat Neurohypophysis

Peter Roper
Mathematical Research Branch,
NIDDK, National Institutes of Health,
Bethesda, MD

March 4, 2005
The hormone vasopressin (AVP) regulates:

- blood osmolality (blood concentration)
- blood pressure
- kidney function
- liver function

Secretion increases during dehydration – mediated by a net depolarization of the cell.
AVP/OT
Neurohypophysis
(Posterior Pituitary)
Pituitary
Stalk
Supraoptic and
Paraventricular Nuclei

Supraoptic and
Paraventricular Nuclei

Pituitary Stalk

Neurohypophysis
(Posterior Pituitary)
Hypothalamus

Dendrites
Soma
Axon
Capillary

Pituitary

Hormone Release
Somato-dendritic secretion of autocrine and paracrine messengers

Dynorphin

Vasopressin

Capillary

Hormone Release
Autoregulatory somato-dendritic release

Dynorphin
 AVP

k-receptor

Binding

Internalization

Unbinding

Docking and Release

V1-A receptor

Dense Core Granule

AVP-Dynorphin

Unbinding

Docking and Release

Dense Core Granule
Basal firing is *slow-irregular*

- Poisson distributed spike train
- Spikes evoked by random synaptic input
- Firing rate ≤ 1.5Hz

- Each spike triggers secretion of AVP into the blood
Dehydration alters the firing pattern

Transient Response

- **Slow Irregular** (<1.5Hz)
 - AVP cells switch to a *phasic* pattern

- **Fast Continuous** (>3Hz)
 - under extreme stress, AVP cells further switch to *fast-continuous*
 - single, non-repeating bursts can be evoked in *slow-irregular* AVP cells

- **Phasic** (>3Hz)
 - Increasing Stress

- AVP cells switch to a *phasic* pattern
- under extreme stress, AVP cells further switch to *fast-continuous*
- single, non-repeating bursts can be evoked in *slow-irregular* AVP cells
Ionic Currents

Trans-membrane currents mediated by voltage and/or calcium sensitive ion channels
Mathematical Model

Hodgkin-Huxley type system with a simple calcium dynamics

\[-C \frac{dV}{dt} = \overbrace{I_{Na} + I_{Ca} + I_A + I_K + I_C}^{\text{Spiking Currents}} + \underbrace{\overbrace{I_{\text{leak}}} \quad \overbrace{I_{\text{syn}}}}_{\text{Reset Currents} \quad \text{Synaptic Input}} \]

\[
\frac{d[Ca^{2+}]_i}{dt} = \alpha I_{Ca}(t) - \gamma ([Ca^{2+}]_i - [Ca^{2+}]_{rest})
\]
The DAP

Each evoked spike is followed by a transient depolarization (DAP)

which depends on calcium

$\tau = 1.851$

$\tau_f = 0.165$

$\tau_s = 1.683$
Modelling the DAP

\[I_{\text{leak}} = I_{K,\text{leak}} + I_{Na,\text{leak}} \]

We model (Li and Hatton, 1997) the DAP by a transient (\(V\)- and) \(Ca^{2+}\)-dependent modulation of a persistent potassium current: \(I_{K,\text{leak}}\)

\[I_{K,\text{leak}} = (1 - R) G_{K,\text{leak}} (V - E_K) \]

\[R \]

\[[Ca^{2+}]_i \]

\[I_{K,\text{leak}} = \text{max} \]

Increasing Calcium

\[I_{K,\text{leak}} = 0 \]

\[[Ca^{2+}]_i \]
Comparing DAP’s from experiment and model
Multiple DAP’s summate to a plateau that is above spike threshold:

and such plateaus sustain phasic bursts
Calcium

- Reaches a plateau early in the burst
- Remains elevated until burst terminates
AVP cells secrete an opioid – dynorphin – from their dendrites.

Dynorphin inhibits AVP cell activity.

Propose that effects of dynorphin increase during active phase and clear during silent phase.
Dynorphin agonists (U50-3):

- Inhibit the DAP
- Prevent bursting (Brown et al., 1999)

Dynorphin antagonists (BNI):

- Prolong durt duration (Brown, 1999)
HOW does dynorphin act?

- **We propose** that dynorphin shifts the half-activation of R to higher Ca^{2+} concentrations

- **Thus** raising the plateau threshold while leaving $[\text{Ca}^{2+}]_i$ unchanged

- **Eventually** plateau can no longer support spiking and cell falls silent – burst terminates
Increasing

Decreasing

Both

Increasing $[\text{Ca}^{2+}]_i$

Decreasing $[\text{Ca}^{2+}]_i$

(Burst terminates)

(Slow depolarization)

$[\text{Ca}^{2+}]_i$

($Post$-$Burst$)

DAP

D

R

R

R

R
Dynamics of dynorphin and the κ-receptor

- D is augmented by Δ when the cell fires the i^{th} spike (say at time T_i)
- D decays exponentially between spikes

$$\frac{d}{dt}D = \Delta \delta(t - T_i) - \frac{1}{\tau_D}D \quad \Delta = \text{constant}$$

Upregulation of the κ-receptor

Propose that Δ increases as a function of D

$$\frac{d}{dt}D = \Delta \delta(t - T_i) - \frac{1}{\tau_D}D \quad \Delta(D) = \Delta_0 + \epsilon D$$

- **Interpretation:** dynorphin upregulates κ-receptor density
Comparisons between real and model bursts

![Graphs showing comparisons between real and model bursts.](image)
If cell depolarized far enough...

...phasic activity
Analysis: the *Fast/Slow* reduction

To analyze the phasic model – first split into *fast* and *slow* components

- **fast**: the spiking currents – I_{Na}, I_{Ca}, I_{K}, I_{A}, I_{c}
- **slow**: the plateau oscillation – $[Ca^{2+}]_i$ and D
Spiking currents \((I_{\text{spike}}) \) pass through saddle-node bifurcation as plateau amplitude increased:
Dissociation of *SLOW* from *FAST* nontrivial:

...the two subsystems are not autonomous

Instead write *SLOW* as a firing rate model and decouple subsystems with this *ansatz*

\[
\frac{d}{dt} C = \nu(R) \Delta C_a - \frac{1}{\tau_{C_a}} (C - C_r) \\
\frac{d}{dt} D = \nu(R) \Delta D - \frac{D}{\tau_D}
\]
Empirically ν can be fit to

$$\nu = \begin{cases}
0 & R \leq R_{\text{thresh}} \\
\Gamma (R - R_{\text{thresh}}) & R > R_{\text{thresh}}
\end{cases}$$
and R_{thresh} is a linear function of I_{osm}.
Nullclines

(i) $I_{app} = 0.0$

(ii) $I_{app} = 3.0$

(iii) $I_{app} = 5.5$
Sub-threshold behaviour

Excitable Bursting – $I_{app} = 0$

- Stable fixed point at $D = 0$ and $[Ca^{2+}]_i = [Ca^{2+}]_{rest}$.
- System is excitable – single oscillations can be evoked by moving the system above threshold ($\Delta Ca^{2+} > 30\text{nM}$).

- Single oscillations are equivalent to evoked bursts in the full model.
- Threshold is close to the calcium influx due to 3 spikes.
Super-threshold behaviour

If the applied current (I_{app}) is increased above threshold, then the fixed point loses stability and the system starts to oscillate – phasic activity.
Firing transitions

- stable steady state \Rightarrow phasic oscillation:

 \[\text{slow irregular} \Rightarrow \text{phasic} \Rightarrow \text{saddle-node bifurcation} \]

- phasic oscillation \Rightarrow stable steady state:

 \[\text{phasic} \Rightarrow \text{fast continuous} \Rightarrow \text{Hopf Bifurcation} \]
Conclusions

We have constructed the first qualitative and quantitative model of the electrical activity of vasopressin MNC’s.

We propose that phasic activity must be driven by an auto-regulatory mechanism, and that dynorphin/κ-opioid receptor secretion is a likely candidate for this mechanism.

Our model reproduces:

- single spikes, basal firing and the fine structure of bursts
- the sequence of firing patterns observed during physiological stress
- (the transient discharge that occurs during sudden stress)

We have also shown that the cells have both excitable and phasic bursting modes: possibly explaining the difference between in vivo and in vitro recordings.
Collaborators

Theory

Arthur Sherman
John Naradzay (UBC)

Experimental – University of Tennessee, Memphis

Bill Armstrong
Joseph Callaway (calcium imaging)
Ryoichi Teruyama (electrophysiology)
Talent Shevchenko (electrophysiology)
Chunyan Li (electrophysiology)