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ABSTRACT
We propose a new technique that uses an observer to estimate the
current input into a neuron whose voltage is measured
electrophysiologically. As a by-product, one also obtains
information about the gating variables of the ionic channels. We
prove the global convergence of the observer for all voltage-gated
ion channel models within the Hodgkin-Huxley formalism. The
current observer can be implemented either offline or concurrently
with the recording. We illustrate the workings of the observer on a
well-known nonlinear neural model.
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1. INTRODUCTION
Neurons communicate through synapses: pre-synaptic
neuronal membrane activity is transmitted across the synapse
via neurotransmitters that activate post-synaptic currents to
drive the neuron. Moreover, neurons exhibit subtle and
complex membrane activity. This nonlinear response is
influenced by both the intrinsic properties of the neuron as
well as the state of the network [1, 2]. 

The membrane voltage of an isolated neuron can be recorded
electrophysiologically, via an intracellular or extracellular
electrode. This voltage change is mediated by internal ionic
currents and the input current applied via the electrode. Thus,
in order to understand the characteristics of neuronal activity, a
neuron is stimulated with various current inputs, typically of
the stepping or ramping type. Variously, the voltage of a
neuron can also be clamped, i.e. held constant; in that case,
currents can be measured. The ionic properties of the channels
that comprise the membrane differ with the cell type. In
addition, neurons of a certain type exhibit individual
differences. Well-defined methods exist to characterize ion
channel kinetics based on voltage- and current-clamping

protocols. It is thus possible to build dynamical models of
neuronal activity [3].

If a neuron in a network (tissue) is voltage-clamped, a current
response is a measure of the input received by it from its pre-
synaptic neighbours. Thus the effect of different inputs that
approximate physiological stimuli can be studied.
Unfortunately, this procedure is intrisically invasive. In
particular, this technique of measurement will interfere with
the neuron’s activity in the network. What is required is a
sensor that passively reports the current input without
interfering with the voltage activity. In this paper we develop a
method to determine the input current from the only available
measurement, i.e., from the membrane voltage.

Most traditional experimental techniques involving
electrophysiological measurements are open-loop: the neuron
is stimulated with either current or voltage and the
corresponding output is read-out. More recently, a feedback-
based technique has become popular: the so called dynamic-
clamp [4]. This allows, for example, the input current to a
neuron to be modified based on the voltage output. This
powerful technique has enabled the study of neuronal networks
that are coupled to computer models in real-time. Dynamic
clamping thus paves the way for the investigation of complex
combinations of coupled organic and artificial networks. A
passive observer of current is an ideal tool that can be used in
combination with the dynamic clamp to measure how global
stimuli applied to the system are transduced to presynaptic
current patterns at various individual neurons.

Mathematical models describing membrane dynamics in
neurons typically follow the formalism first described by
Hodgkin and Huxley [5]. The membrane voltage is given by a
system of ordinary differential equations, where the voltage
dynamics is coupled to several gating variables, which
describe the behavior of the ion channels in the membrane.
The dynamics of the membrane voltage V is governed by 

with a capacitance . The current I is injected into the
cell, either applied via an intracellular electrode, or from pre-
synaptic coupling to other cells. The sum on the right hand
side of (1) represents other currents which influence the
voltage dynamics, e.g. the leak current and currents flowing
through ionic channels. The associated electrochemical
gradients are represented by constant voltages Vj called
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reversal potentials. The conductance gL associated with the
leak current is constant. In case of the other currents, the
conductances gj depend on so-called gating variables wi. More
precisely, each conductance gj usually consists of the maximal
value of the conductance multiplied with non-negative integral
powers of some wi. The dynamics of these gating variables is
governed by differential equations of the form

The functions  and  are positive for all V. Eq. (2)
result from a Markov model of the ith ionic channel. Each
channel has two states: open and closed. The functions 
and   denote the transition rates for opening and closing,
respectively. The gating variable wi denotes the probability
that the ith channel is in the open state. The number p of
equations (2) depends on the selected model. The whole model
(1)-(2) is a system of first order nonlinear ordinary differential
equations.

From a control-theoretic point of view, system (1)-(2) is a
single-input single-output state-space system with the input I
and the state variables V and . The output V
is measured. We propose a two-stage approach to estimate the
input I. First, we design an observer to obtain the state vector
w. Second, we use the information provided by the observer to
obtain an estimate of the input I using a filter.

We will use an observer to estimate those quantities of (1)-(2)
which are not measured directly. The problem of observer
design has received significant attention during the last
decades [6-8]. Classical observers provide an estimate of the
state based on input and output information [8]. These
observers are not applicable since the input I is not measured.

Extensions of observer theory have been made to systems with
unmeasured inputs. These observers are called unknown input
observers. The existence conditions for unknown input
observers of linear time invariant systems are well-known [9-
11]. For nonlinear systems, the existence conditions of
unknown input observers are not well established. Design
methods exist only for special classes of nonlinear systems.
The design method proposed in [12, 13] is based on a certain
decomposition of the system into two subsystems. In turns out
that systems of the class (1)-(2) are already decomposed into
this special form. We will employ this approach to design an
unknown input observer to estimate the unmeasured state
vector w.

The problem of real-time observation of an input occurs also in
communication by chaotic signals [14]. In theory, we would
use the inverse system approach suggested in [15, 16]. In that
case, however, we have to differentiate the measured output
numerically. Unfortunately, numerical differentiation by
divided difference schemes in not reliable. To circumvent this
problem, we design an additional low-pass filter to generate a
smoothed estimate of the input.

This paper is structured as follows. In Section 2 we derive our
estimation algorithm. We apply our method to a particular cell
model in Section 3. The conclusions are given in Section 4.

2. OBSERVER AND FILTER DESIGN
First, we discuss the possible usage of conventional observers.
Next, we design an unknown input observer of the system and
show its convergence. Finally, a filter is employed to estimate
the input.

2.1 Conventional Observers
The class of models described by (1)-(2) has the form

with the measured output V and the unknown initial value w0.
The first subsystem (3) is 1-dimensional, whereas the
dimension  p of the second subsystem (4) depends on the
model under consideration. Note that maps f and g are
nonlinear.
In the beginning, we discuss the design of the observer to
estimate the unknown state variables. In the last decades,
several techniques for a systematic observer design have been
developed [6-8, 17]. Most of these methods are not directly
applicable because they require an explicit knowledge of the
input signal. Therefore, we have to modify the model (3)-(4).
A possible approach is to assume that the input signal varies
slowly or changes only occasional between different regimes.
In other words, we assume that the input signal is “almost”
constant. This information can be incorporated into the model
by an augmentation of (3)-(4) with a further differential
equation . The resulting -dimensional model 

is autonomous. This augmentation of the original system is a
common approach in observer-based parameter estimation [18,
19]. Indeed, this idea is also used to design observers for
systems with unmeasurable inputs [9]. Theoretically, one could
apply arbitrary observer design methods to (5). In fact, we
tried this approach in the beginning.
For linear systems, the observer design problem has been
solved by Luenberger [20, 21], see also references cited in
[22]. The design procedures of linear systems can be applied to
the linearization of a nonlinear system, provided the systems
trajectory stays in a neighbourhood of a given operating point.
Unfortunately, this is not the case here, because the system
shows large oscillations.
The first mathematically justified approach to design observers
for nonlinear systems was developed by Thau [23]. The idea is
to dominate the nonlinearities by a sufficiently large linear part
in the error dynamics. The choice of the observer gain vector is
not based on a local linearization but on global Lyapunov
techniques [24, 25]. These design methods did not work for
our systems because the large observer gains made the
numerical integration of the observer’s equations utterly
impossible.
The development of differential geometric methods in
nonlinear control gave rise to a whole class of new observer
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design methods [26-30]. For all these methods, to obtain the
observer gain one needs to compute certain Lie derivatives
symbolically. The systems in our application are highly
nonlinear. We obtained very large and complicated expressions
for the observer gains (thousands of lines of C code). At best,
the resulting observer did not diverge, but we were not able to
extract a reasonable estimate for I.
For our point of view, conventional observer design techniques
are not suitable to solve our estimation problem.

2.2 Unknown Input Observers
Now, we will design an unknown input observer. Design
procedures are well-established for linear time-invariant
systems [9-11]. Only a limited number of design methods exist
for nonlinear systems. Our approach is based on [12, 13]. We
take the structure of system (3)-(4) into account. This system is
already decomposed into two subsystems. The crucial point is
that the second subsystem (4) depends not explicitly on the
input I. More precisely, system (3)-(4) is already in the
Byrnes-Isidori normal form with relative degree one [31].
The state V of the first subsystem (3) is measured. As an
observer for w we suggest a copy of subsystem (4), which is
driven by the measured output: 

The observation error  is governed by the error
dynamics 

The trajectory  of the observer (6) converges to the state w of
(4) for  if the equilibrium  of the error dynamics
(7) is asymptotically stable uniformly in V. In other words, we
assume that for all V we have  as

. Then, subsystem (4) is said to have a steady state
solution property [32]. We will show in Section 2.3 that the
class of systems discussed here poses this property. Since the
state of subsystem (3) is already known by measurement, the
whole system (3)-(4) is detectable [32].
In contrast to conventional observers, we have no observer
gain to adjust the convergence rate of the observer (6). In so
far, our observer is similar to so-called asymptotic observers
known from biological and chemical process control [33, 34].
Moreover, observer (6) is a reduced observer since we
reconstruct only subsystem (4). Combining the measured
voltage V and the observer trajectory  yields an estimation of
the whole state of (3)-(4), even though the input I is
unmeasured. 

2.3 Stability Analysis
We show here that the observer (6) converges globally. In
particular, we also claim that this type of observer is applicable
to all cell models of the Hodgkin-Huxley type [5]. In addition
to the Connor-Stevens model which will be introduced in
Section 3, this class of models includes several other well-
known models such as the Morris-Lecar model [35], the
FritzHugh-Nagumo model [36, 37], and the Traub model [38,
39], to name a few. If additional information is available, it is
possible to extend the current observer we present here to other
ion channels that are not just voltage-gated, but are also
modulated by intracellular activity, e.g. to use the observer

with a bursting model of pancreatic beta-cells [40],
simultaneous measurements of calcium and adenosine
triphosphate (ATP) would be required.

In our application, we consider models of the type (3)-(4),
whose underlying structure is given by (1)-(2). The observer
(6) is designed for the p equations of the type (2) with
functions  and . To prove the convergence of the
observer we consider the difference between the original
system and the observer. We show that this difference goes to
zero using Lyapunov stability theory.

The equations (2) of system (4) have the form 

for . The corresponding observer

with the initial value  is excited by the measured
voltage V. The observation error of the ith gating variable is
defined by . The associated error dynamics is
governed by

with an initial value . We use the
continuously differentiable candidate Lyapunov function 

with the vector-valued argument . The
function Y is positive definite since it is a quadratic form, i.e.,

 and  for all . Moreover, Y is radially
unbounded, i.e.,  for . The total derivative
of  along the error dynamics (10) is calculated as 

The quadratic terms are always non-negative. If  is not the
zero vector, at least one term  is strictly positive. Moreover,
we have  for all V by construction. (Recall that
these functions are transition rates resulting from a Markov
model.) Therefore, we have 

Hence, by Lyapunov’s Theorem [41], the equilibrium 
of (10) is globally asymptotically stable, i.e.,  for

 and any initial value . This implies
 for , that is, the trajectory  of the

observer (9) converges to the trajectory  of the original
system (8) for .

2.4 Input Estimation
Now, we make use of the information generated by the
observer (6) to obtain an estimate of the current I. For known
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trajectories of V and w we could compute the input I exactly
from (3) by 

Since w is not available directly but estimated by the observer
(6), we consider an estimate  of I defined by 

For a continuous map f we have  for  if
 for , i.e., the estimation (12) converges to

the exact input (11) provided the observer (6) converges to
subsystem (4). Using the inverse system approach [15, 16], one
would estimate I by (12). However, we measure V but not its
time derivative . A numerical computation of  from V by
divided differences provides only a rough estimate of the
derivative.
Up to now, we assumed that the voltage V generated from (3)-
(4) is exactly known. In practical applications we also have to
take disturbances such as noisy measurement into account.
More precisely, we augment the exactly known voltage V by an
additive disturbance signal  ε. If we replace V in Eq. (12) by
the measured voltage , the estimated current  would
not only depend on the disturbance ε but also on its time
derivative . This is disadvantageous especially if the
disturbance signal is indeed random noise.
To avoid an explicit computation of    and to attenuate the
influence of the disturbance  ε we use a filter. More precisely,
for the right hand side of (12) we use a low-pass filter with a
continuous time transfer function

of order . The coefficients  have to be chosen
such that all poles of (13) are in the open left half plane. In the
time domain, a filter given by (13) is a linear operator. In the
following, we denote the action of a filter with the transfer
function T on the signal  by . The application of (13) to
(12) yields the filtered signal 

We assume that  for . Between V and its time
derivative  there holds , where L
denotes the Laplace transform. This results in ,
i.e., instead of filtering the time derivative    by (13) we filter
the measured trajectory V by 

The filtered estimate (14) is obtained by

Taking the common denominator of (13) and (15) into account,
Eq. (16) can equivalently be written

In (17), the numerator degree does not exceed the denominator
degree, i.e., the transfer function is proper. Hence, the filter
(17) can be implemented without differentiators. The whole
estimation scheme is shown in Fig. 1.

The purpose of the filter is to enhance the desired signal   
relative to disturbances such as noise. Here, the filtering is
done on the basis of a suppression of selected frequencies to
damp interfering signals. Since the current I is nearly constant,
a natural choice for the filter is a low-pass. The most important
parameter of a low-bass filter is its cut-off frequency , at
which the gain drops by some specified amount. Although
there are many possibilities to design a low-pass filter, in most
applications Butterworth, Bessel, Chebyshev and Cauer (or
elliptic) filters are used [42]. For our experiments we
employed a Bessel low-pass filter.

Figure 1. Reconstruction scheme for current I based on 
measurement of voltage V

3. APPLICATION TO THE CONNOR-
STEVENS MODEL

We demonstrate the estimation algorithm on a cell model
derived by J. A. Connor and C. F. Stevens [43]. Like the
Hodgkin-Huxley model of nerve activity of the squid giant
axon, the Connor-Stevens model describes important aspects
of the biophysical behaviour of gastropod neuron somas. Here,
in addition to the delayed-rectifier potassium, fast sodium and
leak currents as in the Hodgkin-Huxley model, there is also an
A-type potassium current. It is a well-studied model of Type 1
excitability: its periodic activity is the result of a saddle node
bifurcation at current threshold [44, 45]. Several neurons,
including the regular-spiking neurons of the somatosensory
cortex display Type 1 behavior. For a more complete
discussion of neuronal activity from the point of view of
bifurcation theory we point to [2, 46].

The voltage dynamics read as 
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with the input current I and . The model has a
leak current IL, one current INa for the sodium ions (Na+), and
two currents IK and IA for the potassium ions (K+). These
currents are given by 

with the conductances ,
, , ,

the reversal potentials , ,
, , and the dimensionless gating

variables m, h, n, a, b. The equivalent circuit representation of
Eqs. (18) and (19) is shown in Fig. 2.

Figure 2. Equivalent circuit representation of the Connor-
Stevens model (19)

Figure 3. Output voltage generated from the Connor-Stevens 
model without and with measurement noise

The gating variables m, h, n influence the ionic currents INA
and IK. The additional ionic current IA depends on the gating
variables a and b. Although both currents IK and IA are carried
by potassium ions, the model does not require that the reversal
potentials VK and VA are equal. The gating variables are
governed by the differential equations

with the functions 

and

The first three equations of (20) are already in the form (2),
and the last two equations of (20) can easily be rewritten into
(2).
For the simulation we use the initial values V(0) = -64.453mV,
m(0) = 0.0159, h(0) = 0.9437, n(0) = 0.196, a(0) = 0.0559, b(0)
= 0.2175 and the current signal 

This signal can be interpreted as follows: For
, a low value of background activity leaves

the neuron close to its resting state. At t = 100 ms, a stimulus
arrives at the neuron and kicks the neuron with an excitation
and induces a repetitive firing. From a mathematical point of
view, this qualitative change in the system’s behaviour is due
to a saddle-node bifurcation that gives rise to oscillations
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emerging with arbitrarily low frequencies. The resulting
oscillations are shown on the top of Fig. 3.
The measured voltage of the Connor-Stevens model (18)-(20)
is used to reconstruct the other state variables m, h, n, a and b.
The unknown input observer (6) consists of a copy of Eqns.
(20), which are driven by the measured voltage V of (18): 

Since we have no further knowledge of these variables at
, we use the zero vector of  as an initial value of the

observer (22). The simulation was performed with Simulink®,
where the two subsystems of (18)-(20) are implemented as so-
called S-functions [47]. The simulation results shown in Fig. 4
indicate that the unknown input observer (22) converges.

Figure 4. Trajectories of Connor-Stevens model and the 
unknown input observer (22)

In addition to the ideal case of an undisturbed voltage
measurement we also consider the perturbed case. In
particular, to the output voltage V of (18) we add band-limited
discrete time white noise with sample time  0.1ms and power
0.1. The output voltages with and without noise are shown in
the aforementioned Fig. 3. To estimate the current I by (16) we
need to choose a low-pass filter and the poles of the transfer
function (13). For the suppression of the artificially introduced
measurement noise we use a 4th order Bessel filter. First, the
filter is designed with a cut-off frequency  rad/ms. The
filtered current  for the unperturbed case and for five
realizations of random output perturbations is shown on the top
of Fig. 5. Although the increase of I from 5mA to 10mA at

 ms can be deduced from a visual inspection, the level
of the perturbations is not yet satisfying. For a better
suppression of the noise we decrease the cut-off frequency of
the filter to    rad/ms. The result is also shown on the

bottom in Fig. 5. As expected, we obtain relatively smooth
curves for . The drawback of a lower cut-off frequency is a
slower transient behaviour. In general, after some transients we
obtain a good estimate  of I. However, we still have some
deviations from the exact values of I at , , and

 ms. At this point we should recall that the combination
of the nonlinear unknown input observer (6) with the linear
filter (13) yields a nonlinear filtering scheme. 

Figure 5. Estimated current  for the Connor-Stevens model

4. CONCLUSIONS
A direct measurement of the synaptic input driving a neuron,
especially in vivo, is a challenging problem. We have
presented here an observer based technique useful for
determining the current input into a neuron whose membrane
voltage is measured directly. Observers for synaptic current
could be used to implement a sensor with a minimal of
interference in vivo. Theoretically, they solve the inverse
problem of determining the input from the measured output.
Additionally, the observer also recovers the time courses of the
gating variables which cannot be directly measured. Such a
capability clearly enlarges the scope of useful information that
can be obtained from electrophysiological recordings. An
observer for synaptic current can be used quite generally in any
context that a neuron is recorded from, and especially
effectively in studying small networks. They can thus have a
variety of practical applications.

During the last decades, several conductance based neural
models have been developed after the fashion of Hodgkin and
Huxley [5]. On the other hand, mathematical analyses of the
dynamical properties of neurons continue to provide
considerable understanding of the behavior of neuronal
networks from a theoretical point of view. Current observers
can potentially be used for a direct and independent
verification of theoretical models. The technique of effective
current observers promises to bridge the gap between
speculative theoretical modeling and direct experiment even
further.

The observer design procedure employed in this paper is based
on two assumptions. On the one hand, the system must be
transformable into (3)-(4). By this, the system is decomposed
into two subsystems, where the state of the first subsystem is
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known from measurement and the second subsystem does not
explicitly depend on the input signal. On the other hand, the
second subsystem must have a special stability property. If
these assumptions hold, our design method can also be applied
to other systems outside of cell biology.
The stability result of the observer is based on the assumption
that the voltage is observed noiselessly. We showed by
simulation that the suggested estimation scheme also works
under noisy measurement, even though the estimated current
signal does not have the same quality as in the unperturbed
case. The attenuation of these disturbances as well as the
adaption of model parameters will be subject of further
research.
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