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HOMOGENIZATION OF THE CELL CYTOPLASM: THE CALCIUM
BIDOMAIN EQUATIONS∗

PRANAY GOEL† , JAMES SNEYD‡ , AND AVNER FRIEDMAN†

Abstract. All previous models of the dynamics of intracellular calcium concentration have either
made the ad hoc assumption that the cytoplasm and the endoplasmic reticulum (ER) coexist at every
point in space or have explicitly separated the cytoplasm and the ER into different spatial domains.
The former approach is unjustified, and the dependence on the diffusion coefficients on the geometry
of the ER is unclear; the latter approach leads to extreme computational difficulties. To avoid the
disadvantages of these approaches, we derive a bidomain model of calcium concentration inside the
ER network, and outside it, in the cytosol. The homogenized macroscopic behavior is described in a
two-concentration field model, a formula is derived for the effective diffusion coefficients of calcium
in the ER and in the cytoplasm, and the effective diffusion coefficients are numerically computed for
different ER geometries.
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1. Introduction. Calcium is one of the most important intracellular messengers,
and thus the mechanisms that control the intracellular free calcium concentration are
of fundamental physiological importance. At steady state, the concentration of free
Ca2+ is determined by a number of factors. First, Ca2+ is actively pumped from the
cytoplasm into the sarcoplasmic or endoplasmic reticulum (SR or ER) by calcium
ATPase pumps. Thus the ER, which is physically separated from the rest of the
cytoplasm by the ER membrane, has a much higher Ca2+ concentration than does
the cytoplasm. Similarly, Ca2+ is pumped out of the cell by a variety of active
mechanisms, including Ca2+ ATPase pumps, and Na+ − Ca2+ exchangers. Thus,
at steady state, there are very large Ca2+ gradients across both the ER and cell
membranes, and the cell must continually do work to maintain them. Calcium is also
highly buffered, with approximately 99% of cytoplasmic Ca2+ being bound to large
buffering proteins.

In a wide variety of cell types, both excitable and nonexcitable, the binding of
agonists such as hormones or neurotransmitters to cell-membrane receptors results, via
G-protein activation, in the activation of phospholipase C and the resultant production
of inositol 1,4,5-trisphosphate (IP3). IP3 diffuses through the cell cytoplasm and binds
to IP3 receptors located on the ER membrane. These IP3 receptors are also calcium
channels, and their open probability is controlled by both IP3 and Ca2+; the binding
of IP3 causes an increase in the open probability, which in turn causes the release of
Ca2+ from the ER. Calcium released from the ER is then pumped back into the ER
by Ca2+ ATPases or pumped out of the cell. Modulation of the IP3 receptor open
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probability by IP3 and Ca2+ can then lead to cycles of Ca2+ release and reuptake
into the ER, resulting in oscillations of the intracellular free calcium concentration
and, in some cases, periodic waves [5].

In muscle cells calcium is controlled by similar, but not identical, mechanisms. In
cardiac cells a small influx of calcium through voltage-gated channels in the cell mem-
brane leads to the release of a much larger amount of calcium through the ryanodine
receptors, which are located on the surface of the SR. This process is called calcium-
induced calcium release (CICR). This released calcium diffuses through the cytoplasm
of the cell and activates the contractile proteins, leading to muscle contraction. As
the calcium is removed from the myoplasm by the calcium pumps, the muscle relaxes.
In skeletal muscle the process is essentially identical, except that the opening of the
voltage-gated channels causes a direct opening of the ryanodine receptors, instead of
via the “calcium synapse” of the cardiac cell, which relies on CICR.

These oscillations and waves of calcium have been studied in detail by both ex-
perimentalists and theoreticians [5]. Most models to date, although differing in their
treatment of many of the biochemical details, nevertheless all make the same approx-
imation of ignoring the detailed structure of the ER. Thus, although it is well known
that the ER forms a branching network (largely interconnected), with an interior
that is distinct from the cell cytoplasm, this fact has largely been ignored, with most
models making the a priori assumption that a Ca2+ concentration for both the ER
and the cytoplasm can be defined at each point in space. If we let c and e denote,
respectively, the concentration of Ca2+ in the cytoplasm and the ER (or SR), then
this results in equations of the form

∂c

∂t
= div (A∇c) + f(c, e),(1.1a)

∂e

∂t
= div (B∇e) + g(c, e)(1.1b)

for some functions f and g that model the Ca2+ fluxes in and out of the cytoplasm
or ER. We call these the calcium bidomain equations. In general, these equations for
c and e will be coupled with other equations that describe various receptor states,
ATPase pump states, or other model variables. In this simple formulation, the diffu-
sion coefficients A and B will be related to the geometry of the ER in some unknown
way. Also note that the functions f and g that model Ca2+ kinetics and fluxes may be
defined only on the surface of the ER. For instance, a Ca2+ ATPase pump that moves
Ca2+ from the cytoplasm to the ER should be modeled by a flux term that occurs
only on the surface of the ER. The bidomain equations ignore this complication, as
they assume that ER and cytoplasm coexist at all points.

Although this has been a useful approach, it suffers from two principal disad-
vantages. First, the effective diffusion coefficients must depend upon the detailed
geometry of the ER, but this dependence is neither clear nor explicit in the bidomain
equations. Second, the terms f and g denote volume fluxes (with units of concentra-
tion per time, i.e., moles per volume per time), but physically, many of the terms in
them represent boundary fluxes (i.e., the flux of calcium across the ER membrane,
with units of moles per area per time). Again, it is not clear how to derive the correct
expression for the volume flux in terms of the underlying boundary flux.

Since the ER (and, in muscle cells, the SR) forms an interconnected network
through the cytoplasm, it is natural to use homogenization techniques to derive the
calcium bidomain equations and to answer the two questions above. In this approach



CALCIUM BIDOMAIN EQUATIONS 1047

the ER is assumed to form a periodic network on a scale much smaller than that of the
entire cell. The bidomain equations then arise in the limit as the scale of the ER tends
to zero. There are thus two crucial assumptions for the use of homogenization: first,
that the ER forms a periodic network, and second, that the period of this network is
much smaller than the length of a typical cell. As is the case in the application of all
homogenization techniques, neither of these assumptions is exactly correct. The ER,
although forming a network structure, is not periodic over an entire cell, although
regions of local approximate periodicity may occur. In these regions the period can
range from less than 0.1 μm up to 0.5 μm, while a typical cell has a diameter of
around 30 μm. The smooth ER tends to have a tubular structure, while the rough
ER tends to come in sheets. Nevertheless, it is believed that the ER is so extensive,
and so highly reticulated, that no region of the cell is far from some portion of the
ER. Thus, it is not unreasonable to approximate the ER as a periodic network with a
period much smaller than the diameter of the cell, a network that extends throughout
all regions of the cell.

Not only do we wish to gain a better understanding of the mathematical basis
of the calcium bidomain equations, and of the connection between the geometry of
the ER and the effective diffusion coefficients, but we also wish to derive a method
by which a homogenized domain may be coupled with a nonhomogenized domain.
Such coupled problems are becoming more important, particularly in detailed spatial
studies of cardiac cells. In these cells the release of Ca2+ occurs in a very narrow
region, around 12 nm across (called the diadic cleft); the junctional SR, positioned
very close to L-type calcium channels, is connected to a sparse, reticular network
SR in the bulk of the myocyte (for a recent discussion of SR microanatomy, see, for
example, Brochet et al. [3]). The ryanodine receptors open to this (cleft) region,
as do the voltage-sensitive Ca2+ channels, and thus the principal control of calcium
release occurs there. However, experimental techniques do not yet allow the direct
measurement of Ca2+ in the diadic cleft; Ca2+ can be measured only once it has
left the diadic cleft and entered the myoplasm of the cardiac cell. Thus, in order to
study both the control of calcium release at the level of the diadic cleft, as well as
the calcium transient on the level of the entire sarcomere, it is necessary to construct
multiscale models in which one part of the domain (the myoplasm) is homogenized,
while another part of the domain (the diadic cleft) has separated SR and myoplasm
regions.

Here we use the technique of homogenization (Bensoussan, Lions, and Papani-
calaou [2] and Jikov et al. [4]) to study these questions. There is a large body of
work on similar problems. The bidomain model for cardiac tissue [7, 6, 5] is based on
essentially the same assumptions as those underlying calcium models, and Neu and
Krassowska (see [7, 6]) have used homogenization to show how the bidomain model
may be derived from the underlying equations. However, that work is in a completely
different physiological context, being applied to the electrical activity of a syncytium
of cardiac cells, and thus the resulting homogenized equations do not apply to cal-
cium dynamics. The techniques of homogenization are also well known in the theory
of porous media [2, 4]. Although the approach we use here is not new, its application
to the construction of calcium dynamics models is. In particular, our construction of
a model with both homogenized and nonhomogenized regions is unique in the field
of calcium dynamics, as is our derivation and calculation of the effective diffusion
coefficients.
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Fig. 1. The periodic geometry of the ER network.

2. Formal homogenization.

2.1. Formulation of the problem. We consider a region Ω of R3 in which
calcium is present both in the cytosol and the ER. We visualize the ER as forming
a periodic network that occupies a fraction of Ω, as shown in Figure 1. Taking the
period of a unit cell to be ε, the ER calcium occupies a connected domain Ωε

e, and
cytosolic calcium occupies the connected domain Ωε

c = Ω \ Ωε
e. We denote these

concentrations as cε and eε, respectively. A superscript ε indicates that the quantity
depends on the period ε used to define the geometry. We thus obtain a family of
problems parameterized by ε, and we shall seek solutions in the limit ε → 0.

The concentrations cε and eε obey the diffusion equation in their respective do-
mains:

∂cε

∂t
= div (Aε ∇cε), x ∈ Ωε

c,(2.1a)

∂eε

∂t
= div (Bε ∇eε), x ∈ Ωε

e,(2.1b)

where Aε = aij(
x
ε ) and Bε = bij(

x
ε ) are the diffusion coefficients corresponding to

calcium in the cytosol and the ER, respectively. The boundary condition on the
membrane Γε, which separates Ωε

c from Ωε
e, is a flux due to the Serca pumps:

Aε ∇cε · nε
c = ελf(cε, eε) on Γε,(2.2a)

−Bε ∇eε · nε
e = ελf(cε, eε) on Γε,(2.2b)

where nε
c, nε

e denote the unit exterior normals to the boundary of Ωε
c and Ωε

e, re-
spectively, satisfying nε

c = −nε
e on Γε. In the appendix we explain the appearance of

the small parameter ε in (2.2); λ and f are related to the physical properties of the
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Serca pumps. The parameter λ can depend on x, but for simplicity we take it to be
a constant.

2.2. The asymptotic expansion. In addition to the macroscopic variable x,
we introduce a “periodic” unit cube with microscopic variable y (y = (y1, y2, y3),
0 ≤ yi ≤ 1) and denote by Ωc the set of points y = x

ε in the unit cube for which
x ∈ Ωε

c; similarly we denote by Ωe the set of points y = x
ε in the unit cube for which

x ∈ Ωε
e. We assume that both concentrations cε and eε are functions of x and y,

x ∈ Ω, y ∈ Ωc for cε, and x ∈ Ω, y ∈ Ωe for eε:

cε = c(x, y, t), eε = e(x, y, t)(2.3)

with y = x/ε. The formal asymptotic expansions for cε and eε are of the form

cε = c0(x, y, t) + εc1(x, y, t) + ε2c2(x, y, t) + · · · ,
eε = e0(x, y, t) + εe1(x, y, t) + ε2e2(x, y, t) + · · · ,(2.4)

where

ck(·, y) and ek(·, y) are 1-periodic in y.

Setting

∇ ≡ d

dxi
=

∂

∂xi
+ ε−1 ∂

∂yi

it follows that div(Aε∇) acts on a function of (x, y) with y = x
ε as follows:

div (Aε∇) =

(
∂

∂xi
+ ε−1 ∂

∂yi

)
aij(y)

(
∂

∂xi
+ ε−1 ∂

∂yi

)
(2.5)

= ε−2A0 + ε−1A1 + A2,

where

A0 =
∂

∂yi

(
aij(y)

∂

∂yj

)
,

A1 =
∂

∂yi

(
aij(y)

∂

∂xj

)
+

∂

∂xi

(
aij(y)

∂

∂yj

)
,(2.6)

A2 = aij(y)
∂2

∂xi∂xj
.

2.3. The microdescription. Applying (2.5) to the function (2.3), the equations
(2.1) become

∂cε

∂t
= (ε−2A0 + ε−1A1 + A2) c

ε for x ∈ Ω, y ∈ Ωc,(2.7a)

∂eε

∂t
= (ε−2A0 + ε−1A1 + A2) e

ε for x ∈ Ω, y ∈ Ωe(2.7b)

and the boundary conditions (2.2) become

aεij

(
∂cε

∂xj
+ ε−1 ∂c

ε

∂yj

)
nci = ελf(cε, eε) for x ∈ Ω, y ∈ Γ,(2.8a)

−bεij

(
∂eε

∂xj
+ ε−1 ∂e

ε

∂yj

)
nei = ελf(cε, eε) for x ∈ Ω, y ∈ Γ,(2.8b)

where the ni are now unit normals on Γ.
We proceed to equate to zero the coefficients ε−2+i of (2.7) and ε−1+i of (2.8).
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2.4. The problem at lowest order. The equations (2.7) at order ε−2 are

∂

∂yi

(
aij(y)

∂c0

∂yj

)
= 0, y ∈ Ωc,(2.9a)

∂

∂yi

(
bij(y)

∂e0

∂yj

)
= 0, y ∈ Ωe,(2.9b)

and the boundary conditions at order ε−1 are

aij(y)
∂c0

∂yj
ni = 0 = bij(y)

∂e0

∂yj
ni, y ∈ Γ,(2.10)

with c0 and e0 1-periodic in y. For fixed x, the only periodic solution to the above
equations is c0 = constant and e0 = constant as functions of y, so that

c0 = c0(x, t), e0 = e0(x, t).(2.11)

2.5. The problem at first order. The equations at order ε−1 are

∂

∂yi

[
aij(y)

(
∂c0

∂xj
+

∂c1

∂yj

)]
= 0, y ∈ Ωc,(2.12)

∂

∂yi

[
bij(y)

(
∂e0

∂xj
+

∂e1

∂yj

)]
= 0, y ∈ Ωe,(2.13)

and boundary conditions of order 1 are

aij(y)

(
∂c0

∂xj
+

∂c1

∂yj

)
ni = 0 = bij(y)

(
∂e0

∂xj
+

∂e1

∂yj

)
ni, y ∈ Γ.(2.14)

We introduce the solutions χc(y) and χe(y) of the following system (the “cell
problems”):

∂

∂yi

[
aij(y)

(
∂χc

k

∂yj
+ δjk

)]
= 0, y ∈ Ωc,(2.15a)

∂

∂yi

[
bij(y)

(
∂χe

k

∂yj
+ δjk

)]
= 0, y ∈ Ωe,(2.15b)

aij(y)

(
∂χc

k

∂yj
+ δjk

)
ni = 0 for y ∈ Γ,(2.15c)

bij(y)

(
∂χe

k

∂yj
+ δjk

)
ni = 0 for y ∈ Γ,(2.15d)

where χc
k and χe

k are 1-periodic in y. Then we can write

c1 = χc
i

∂c0

∂xi
+ c̄1,(2.16)

e1 = χe
i

∂e0

∂xi
+ ē1,(2.17)

where c̄1, ē1 satisfy a homogeneous system in y whose solution is a constant indepen-
dent of y. Hence c̄1 = c̄1(x, t) and ē1 = ē1(x, t). Note that χc

k and χe
k are unique up

to a constant, but this constant can be chosen in an arbitrary manner, since this will
cause only a change in c̄1(x, t) and ē1(x, t).
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2.6. The problem at second order. The equations at order ε0 are

∂

∂xi

[
aij(y)

(
∂c0

∂xj
+

∂c1

∂yj

)]

+
∂

∂yi

[
aij(y)

(
∂c1

∂xj
+

∂c2

∂yj

)]
=

∂c0

∂t
, y ∈ Ωc,

(2.18)

∂

∂xi

[
aij(y)

(
∂e0

∂xj
+

∂e1

∂yj

)]

+
∂

∂yi

[
aij(y)

(
∂e1

∂xj
+

∂e2

∂yj

)]
=

∂e0

∂t
, y ∈ Ωe,

(2.19)

and the boundary conditions of order ε give

aij(y)

(
∂c1

∂xj
+

∂c2

∂yj

)
nci = λf(c0, e0), y ∈ Γ,(2.20)

bij(y)

(
∂e1

∂xj
+

∂e2

∂yj

)
nei = −λf(c0, e0), y ∈ Γ.(2.21)

Integrating (2.18) on Ωc we get

∫
Ωc

∂

∂xi

[
aij(y)

(
∂c0

∂xj
+

∂c1

∂yj

)]
dy

+

∫
Ωc

∂

∂yi

[
aij(y)

(
∂c1

∂xj
+

∂c2

∂yj

)]
dy =

∫
Ωc

∂c0

∂t
dy

(2.22)

and ∫
Ωc

∂c0

∂t
dy = γc

∂c0

∂t
,(2.23)

where γc =
∫
Ωc

dy is the volume fraction of the unit cell occupied by the cytosol.

Using (2.16) we then have

∫
Ωc

∂

∂xi

[
aij(y)

(
∂c0

∂xj
+

∂c1

∂yj

)]
dy

=

∫
Ωc

∂

∂xi

[
aij(y)

(
∂c0

∂xj
+

∂

∂yj

(
χc
k

∂c0

∂xk

))]
dy

=

∫
Ωc

∂

∂xi

[
aij(y)

(
δjk +

∂χc
k

∂yj

)
∂c0

∂xk

]
dy

=
∂

∂xi

(
ãik

∂c0

∂xk

)
,(2.24)

where the ãik are defined by

ãik =

∫
Ωc

aij(y)

(
δjk +

∂χc
k

∂yj

)
dy.(2.25)
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Applying the divergence theorem to the second term on the left-hand side of
(2.22) gives∫

Ωc

∂

∂xi

[
aij(y)

(
∂c1

∂xj
+

∂c2

∂yj

)]
dy

=

∫
Γ

aij(y)

(
∂c1

∂xj
+

∂c2

∂yj

)
nci dΓ(y)

=

∫
Γ

λf(c0, e0) dΓ(y) by (2.20)

= λ̃f(c0, e0),(2.26)

where λ̃ = λ
∫
Γ
dΓ.

From (2.23), (2.24), (2.25), and (2.26) we obtain the macroscopic equation for c0:

γc
∂c0

∂t
=

∂

∂xi

(
ãik

∂c0

∂xk

)
+ λ̃f(c0, e0).(2.27)

The coefficients ãik are called the homogenized diffusion coefficients of Aε. The
coefficients ãik/γc are called the effective diffusion coefficients (EDCs) of the homog-
enized (macroscopic) description of the problem.

By a similar reasoning, the macroscopic equation for e0 is

γe
∂e0

∂t
=

∂

∂xi

(
b̃ik

∂e0

∂xk

)
− λ̃f(c0, e0),(2.28)

where the b̃ik are the homogenized diffusion coefficients of Bε, given by a formula
similar to (2.25). Observe that the cell problems for the operators Aε and Bε are
decoupled.

2.7. Numerical calculation of χi. The preceding formulas for the homoge-
nized problem are valid for any geometry of the ER. Below we shall consider the
special case when the ER consists of three pipes, orthogonal at the center of the unit
cube as shown in Figure 2. The dimensions of the pipes are taken to be 0.1 units
along the short edge, and we take aij = a δij , bij = b δij with a = b = 0.25 μm2/ms.

The functions χi(y) can be evaluated numerically as we now demonstrate. Let
χe denote the vector field with components χe

i . The χe
i (y) are determined by solving

the boundary value problem on the unit cell given by

div [B(∇χe + I)] = 0 on Ωe,(2.29a)

[B(∇χe + I)] · n = 0 on Γ(2.29b)

with χe periodic across opposite boundaries on the unit cube. We fix the arbitrary
constant in χe

i by taking χe
i = 0 at the center of the cube (0.5, 0.5, 0.5).

The values of each of the χe
i are shown in Figure 3, and the vector field χe =

(χe
1, χ

e
2, χ

e
3) is plotted in Figure 4.

We compute that
∫
Ωe

(
∂χe

1

∂y1
+ 1)dy = 0.01047. Since b = 0.25, (2.25) gives the

homogenized diffusion coefficient b̃ij = 2.6175 × 10−3 δij . The computation shows

that the integrals
∫
Ωe

χe
i dy are zero. Furthermore,

∫
Ωe

∂χe
i

∂yj
dy vanish also if i �= j,

implying that the effective diffusion is again isotropic.

A similar computation for χc
i gives

∫
Ωc

(
∂χc

1

∂y1
+ 1)dy = 0.95.
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Fig. 2. The periodic unit cell. Although the ER in this figure is shown to be composed of three
orthogonal tubes with square cross-section, it can, in general, assume any periodic geometry.

3. The macroscopic equations in the presence of calcium buffers. Let
us now assume that calcium reacts with buffering proteins that are present in the
cytosol and the ER. If we denote the concentrations of the buffer with calcium bound
by bc and be, respectively, in the cytosol and the ER, and c and e now denote the
concentration of free calcium, then the corresponding equations for reaction-diffusion
of the species can be taken to be (to avoid confusion we denote the diffusion coefficient
B by M in this section)

∂cε

∂t
= div (A∇cε) + kc− bεc − kc+ cε (Bc − bεc), x ∈ Ωc

ε,(3.1)

∂bεc
∂t

= div (Dc ∇bεc) − kc− bεc + kc+ cε (Bc − bεc), x ∈ Ωc
ε,(3.2)

∂eε

∂t
= div (M ∇eε) + ke− bεe − ke+ eε (Be − bεe), x ∈ Ωe

ε,(3.3)

∂bεe
∂t

= div (De ∇bεe) − ke− bεe + ke+ eε (Be − bεe), x ∈ Ωe
ε,(3.4)

where k+ is the association rate of calcium binding to the buffer, and k− is the rate
of dissociation of buffered calcium. Dc = dcij(

x
ε ) and De = deij(

x
ε ) are the diffusion

coefficients of bεc and bεe, respectively.
The boundary conditions on Γε, (3.5a) and (3.6a), are supplemented by (3.5b)

and (3.6b), assuming that the buffer proteins are confined to their respective domains:

A∇cε · nε
c = ελf(cε, eε),(3.5a)

Dc ∇bεc · nε
c = 0 on Γε(3.5b)

and

−M ∇eε · nε
e = ελf(cε, eε),(3.6a)

De ∇bεe · nε
e = 0 on Γε.(3.6b)
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(a) (b) (c)

Fig. 3. The three components (a) χe
1, (b) χe

2, and (c) χe
3 of the solution to the cell problems

(2.29) solved for the geometry of section 2.7.

If we assume that

bεc = b0c(x, y, t) + εb1c(x, y, t) + ε2b2c(x, y, t) + · · · ,
bεe = b0e(x, y, t) + εb1e(x, y, t) + ε2b2e(x, y, t) + · · · ,(3.7)

we can then proceed as in the previous section. For example, instead of (2.7), we now
have

∂cε

∂t
= (ε−2A0 + ε−1A1 + A2) c

ε + kc− bεc − kc+ cε (Bc − bεc) in Ωc,(3.8)

whereas the boundary condition (2.8) is unchanged:

aεij(y)

(
∂cε

∂xj
+ ε−1 ∂c

ε

∂yj

)
nci = ελf(cε, eε) on Γ.(3.9)

The effect of the additional terms in (3.8) can be seen at the order ε0 level of the
differential equation

∂

∂xi

[
aij(y)

(
∂c0

∂xj
+

∂c1

∂yj

)]
+

∂

∂yi

[
aij(y)

(
∂c1

∂xj
+

∂c2

∂yj

)]

=
∂c0

∂t
−
(
kc− b0c − kc+ c0 (Bc − b0c)

)
, y ∈ Ωc,

(3.10)

while the boundary conditions are as before,

aij(y)

(
∂c0

∂xj
+

∂c1

∂yj

)
nci = λf(c0, e0), y ∈ Γ.(3.11)

Thus the macroscopic equation for c0 is now

γc
∂c0

∂t
=

∂

∂xi
ãik

∂c0

∂xk
+ γc

(
kc− b0c − kc+ c0 (Bc − b0c)

)
+ λ̃f(c0, e0).(3.12)

Similarly, the macroscopic equation for e0 is

γe
∂e0

∂t
=

∂

∂xi
m̃ik

∂e0

∂xk
+ γe

(
ke− b0e − ke+ e0 (Be − b0e)

)
+ λ̃f(c0, e0)(3.13)



CALCIUM BIDOMAIN EQUATIONS 1055

Fig. 4. The vector field χe = (χe
1, χ

e
2, χ

e
3) corresponding to the solutions of the cell problems in

Figure 3.

and the macroscopic equations for b0c and b0e are obtained as

γc
∂b0c
∂t

=
∂

∂xi
d̃cik

∂b0c
∂xk

− γc

(
kc− b0c − kc+ c0 (Bc − b0c)

)
,(3.14)

γe
∂b0e
∂t

=
∂

∂xi
d̃eik

∂b0e
∂xk

− γe

(
ke− b0e − ke+ e0 (Be − b0e)

)
,(3.15)

where the d̃cik and d̃eik are obtained by solving the cell problems corresponding to b0c
and b0e. Note that in the special case, for example, aij = const × dij , c

0 and b0c share
the same solution to the cell problem similar to (2.29).

In a similar way one may include the effects of multiple buffers.

4. Combining homogenized domains with nonhomogenized domains.
We next consider the case that the homogenized domain is a part of a larger domain.
In Figure 5, for example, we indicate a region where cytosolic calcium is in contact with
a region where the domain has been homogenized. For simplicity, we will consider the
case with no buffers. The extension to the case of buffered calcium is straightforward.

Let us assume the homogenized domain Ω+(x1, x2, x3) and the “nonhomogenized”
domain Ω−(x1, x2, x3) are separated by the plane x1 = 0. The boundary Γ0 between
Ω+ and Ω− has “holes” Γε

c,i (i = 1, . . . ,mε) through which calcium can diffuse across
Γε
c,i = ∂Ωε

+,i

⋂
(x1 = 0) from x1 < 0 to x1 > 0. Those parts of Γ0 across which

calcium is insulated between Ω+ and Ω− are denoted as Γε
e,i = ∂Ωε

+,i

⋂
(x1 = 0) so



1056 PRANAY GOEL, JAMES SNEYD, AND AVNER FRIEDMAN

Fig. 5. An example of geometry showing a homogenized domain separated from a nonho-
mogenized domain by a boundary Γ0. Such a situation represents, for example, calcium within a
sarcoplasmic network (in blue) surrounded by cytosolic calcium (in red), adjacent to a (cytosolic)
region where the ER is absent.

that Γ0 = Γε
c,i

⋃
iΓ

ε
e,i. Let us denote the calcium concentration in the nonhomogenized

cytosol to be c− and that in the bidomain to be cε+. Then on Γ0 we have the boundary
conditions

Aε ∇cε− · nε
c = 0,(4.1a)

Bε ∇eε+ · nε
e = 0 on Γε

e ≡
⋃
i

Γε
e,i,(4.1b)

and

cε− = cε+ on Γε
c ≡

⋃
i

Γε
c,i.(4.2)

In the limit ε → 0, we claim that the following continuity of concentration holds:

c− = c0 on Γ0,(4.3)

and flux continuity is given as

aij
∂c−
∂xj

ni = ãij
∂c0

∂xj
ni on Γ0.(4.4)

In homogenization problems considered in literature, the functions cε+, e
ε
+ are of-

ten assumed to be continuous across the interface, and in this situation one derives the
homogenized problem for both the Dirichlet problem and the Neuman problem (with
homogenized conormal derivative) (see [2, p. 87]). There is no rigorous mathematical
proof that covers our situation, however. Using asymptotic analysis with inner and
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lεY ,i

Z

Γ0

Ωε
+,i

Y

Γε
c,i

Γε
e,i

x1 = 0

Ω− Ω+

Fig. 6. Concentration is continuous across the boundary between the homogenized and nonho-
mogenized domains. Hence c− = c0 on Γ0.

outer expansions, Krassowska and Neu gave a formal proof of the transmission condi-
tions of the type (4.3) and (4.4) for a similar problem. Here we give intuitive proofs
of the assertions (4.3) and (4.4).

Suppose first that cε+ is a constant, c�, in Ωε
c ∈ Ω+; see Figure 6. From any point

Y on Γε
e,i we draw a curve lεY,i in Ω− with length O(ε) and with end-point Z on either

Γε
c,i+2 or Γε

c,i−2. Since cε− = cε+ = c� at Z, we can write

cε−(Y ) = c� +

∫
lεY,i

∂cε−
∂s

ds,(4.5)

where s is the length parameter. We can choose the curve lεY,i such that when Y

varies along Γε
e,i the curves lεY,i trace a region in Ω−,i in x1 < 0 with volume O(ε3).

By the Cauchy–Schwarz inequality we then have

|cε−(Y ) − c�|2 ≤
(∫

lεY,i

|∇cε−|2
)

O(ε).(4.6)

Integrating over Y in Γε
e,i, taking the sum over i, we obtain (since cε− = c� on

the Γε
c,i)

∫
Γ0

|cε−(Y ) − c�|2 ≤
∑
i

(∫
Ω0,i

|∇cε−|2
)

O(ε) = O(ε),(4.7)

where Ω0,i is a domain in x1 < 0 lying within O(ε) distance from Γ0. As ε → 0, the
right-hand side converges to zero, and thus we obtain∫

Γ0

|cε− − c�|2 = 0.(4.8)
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Hence c− = c� on Γ0.
The above argument can be applied in any interval J of Γ0 on which c+ is a

constant. Suppose that c+ is not constant, but cε+ → c+ uniformly on Γ0 as ε → 0, as
well as cε− → c− uniformly on Γ0 as ε → 0, where c+ and c− are continuous functions.
Then for any interval J of small length δ, c+ = c� + σ(δ), where σ(δ) → 0 as δ → 0.
As before,

|cε−(Y ) − c�|2 ≤
(∫

lεY,i

|∇cε−|2
)

O(ε) + |cε−(Z) − c�|2, Y ∈ Γε
e,i ⊂ J,(4.9)

so that

∫
Γε
e,i

|cε−(Y ) − c+|2 ≤
(∫

Ω0,i

|∇cε−|2
)
O(ε) + (σ1(δ) + σ1(ε))

∫
lεY,i

1,

where σ1(δ) → 0 as δ → 0 and σ1(ε) → 0 as ε → 0, since c+ = c� + σ(δ) and cε− = cε+
on Γε

c,i±2. Summing over i,∫
J

|cε−(Y ) − c+|2 ≤
(∫

Ω0

|∇cε−|2
)
O(ε) + (σ1(δ) + σ1(ε)) |J |.(4.10)

Decomposing Γ0 into such intervals J = Jk, applying (4.10), and letting ε → 0
and δ → 0, we get ∫

Γ0

|c− − c+|2 = 0,(4.11)

and the assertion (4.3) follows.
We next provide an intuitive proof for the relation (4.4). For simplicity we consider

the stationary two-dimensional case where the ER consists of isolated “cells” instead
of a connected network, as in Figure 7. Let Γ0 be the boundary that separates the
homogenized domain, Ω+ ∈ {x1 > 0}, and the nonhomogenized domain, Ω− ∈ {x1 <
0}. In the ER, Ωε

e, we take Δeε+ = 0 and in the cytosol we take Δcε = 0. Let
Γ±δ,η = {x1 = ±δ, −η ≤ x2 ≤ η}. Assume, first, that Γ+δ,η does not cut any of the
cells Ωε

e

⋂
{x1 = δ}. Then

a

∫
Γ−δ,η

∂cε−
∂x1

= a

∫
Γ0

∂cε−
∂x1

+ σ1(δ)

= a

∫
Γε
c,η

∂cε−
∂x1

+ σ1(δ),(4.12)

where Γε
c,η =

(⋃
i Γ

ε
c,i

) ⋂
{−η ≤ x2 ≤ η}, since

∂cε−
∂x1

= 0 on Γ0 \ Γε
c,i. σ1(δ) → 0

as δ → 0, since the integrals computed on the horizontal segments Γδ,±η go to zero
with δ.

Because of the transmission conditions (2.2), on every Ωε
e,i between x1 = 0 and

x1 < δ,
∫
∂Ωε

e,i

∂cε+
∂x1

= 0. By the divergence theorem and the conditions, a
∂cε−
∂x1

= a
∂cε+
∂x1

on Γε
c,η,

a

∫
Γε
c,η

∂cε−
∂x1

= a

∫
Γε
c,η

∂cε+
∂x1

= a

∫
Γ+δ,η

∂cε+
∂x1

+ σ2(δ) (σ2(δ) → 0 as δ → 0).(4.13)
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δδ

2 η

Γ0

x1 = 0

Ω− Ω+

Ωε
e,i

Γε
c,i

Γ−δ,η Γ+δ,η

Γε
e,i

Γδ,+η

Γδ,−η

Fig. 7. Flux is continuous across the boundary between the homogenized and nonhomogenized

domains. Hence aij
∂c−
∂xj

ni = ãij
∂c0

∂xj
ni on Γ0.

Taking ε → 0 and assuming that a∇cε+ → ã∇c+ in a weak sense, where ã is
defined by (2.25) (ãij = ã δij), we get

a

∫
Γ−δ,η

∂c−
∂x1

= ã

∫
Γ+δ,η

∂c+
∂x1

+ (σ1(δ) + σ2(δ)).(4.14)

Taking δ → 0, we get

a

∫
Γ0,η

∂c−
∂x1

= ã

∫
Γ0,η

∂c+
∂x1

.(4.15)

Since Γ0,η is arbitrary, (4.4) follows.
If Γ+δ,η does cut some cells Ωε

e,k, we need to replace the right-hand side in (4.13)
by

a

∫
Γ+δ,η

⋂
Ωε

c

∂cε+
∂x1

+ a

∫
∂Ωε

e,k

⋂
{x<δ}

∂cε+
∂x1

+ σ3(δ) (σ3(δ) → 0 as δ → 0).(4.16)

But as ε → 0, the sum of the last integrals converges to a
∫
Γ+δ,η

∂c+
∂x1

(assuming

again that the derivative of cε+(x, x
ε ) converges to the derivative of c+(x) in a weak

sense).

5. Discussion.

5.1. Conservation of calcium. The homogenized equations are consistent with
conservation of calcium. Consider a homogenized domain, Ω+, and a nonhomogenized
domain, Ω−, separated by a boundary Γ0 as in Figure 5. We assume, for simplicity,
that cytosolic calcium in Ω− obeys the diffusion equation (ignoring buffering for the
moment)

∂c−
∂t

=
∂

∂xi

(
aij

∂c−
∂xj

)
(5.1)
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Fig. 8. Variation of the effective diffusion coefficient with the size of the ER. The factor∫
Ωe

(
∂χe

1
∂y1

+ 1)dy is obtained from the solution to the cell problems (2.29) solved for the geometry of

section 2.7; the effective diffusion coefficient (in units, μm2/s) is plotted as a function of (a) the
short edge length and (b) the corresponding ER volume fraction.

and in Ω+ cytosolic calcium obeys the equation

γc
∂c+
∂t

=
∂

∂xi

(
ãij

∂c+
∂xj

)
+ λ̃f(c+, e+),(5.2)

while ER calcium obeys

γe
∂e+

∂t
=

∂

∂xi

(
b̃ij

∂e+

∂xj

)
− λ̃f(c+, e+).(5.3)

Let us also assume that calcium flux across all other boundaries except Γ0 is zero,
that is, Ω− and Ω+ are isolated with respect to calcium. We wish to show that net
calcium in the two domains is conserved. Between Ω− and Ω+, calcium is exchanged
across the boundary Γ0 while obeying the boundary condition (4.4)

aij
∂c−
∂xj

ni = ãij
∂c+
∂xj

ni on Γ0.(5.4)

Integrating (5.1), (5.2), and (5.3) over their respective domains, and summing, it
is easily obtained (using the divergence theorem and (5.4)) that∫

Ω−

∂c−
∂t

+ γc

∫
Ω+

∂c+
∂t

+ γe

∫
Ω+

∂e+

∂t
= 0.(5.5)

Equation (5.5) shows that the total calcium (
∫
Ω− c− + γc

∫
Ω+ c+ + γe

∫
Ω+ e+) is

invariant in time. We remark here that the c+ can be thought of as “occupying”
the fraction γc of Ω+; similarly e+ can be thought of as being distributed over the
fraction γe of Ω+. We note that adding buffering reactions to the equations also
preserves calcium similarly.

5.2. Variation of the diffusion properties with the geometry of the ER.
The effective diffusion coefficient varies with the geometry of the ER. Figure 8 shows
a plot of the effective diffusion coefficient as a function of the short edge length, l,
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Fig. 9. An example of an alternate geometry of the ER.

for an ER composed of three orthogonal pipes of uniform, square cross-section (as in
section 2.7), as well as the volume fraction, 3l2 − 2l3, of the ER. In absence of an ER
(that is, when γe = 0), we take the diffusion coefficient in the cytosol to be 250 μm2/s.
As the volume of the ER increases, the effective diffusion coefficient of ER calcium also
increases, while the effective diffusion coefficient of cytosolic calcium decreases. Notice
that, for this geometry, the symmetry between the ER and the cytosolic structures is
reflected in the relation, EDCER(ER edge length = l) = EDCCytosol(ER edge length =
1 − l).

The effective diffusion coefficient also depends upon the geometry of the ER,
with a more tortuous geometry resulting in a lower effective diffusion coefficient in
the ER. In Figure 9 we consider another example of a periodic ER geometry. For this
geometry, the ER occupies a volume fraction γe =

∫
Ωe

dy = 0.0285. The solution to

the cell problem for this geometry gives
∫
Ωe

(
∂χe

1

∂y1
+1)dy =

∫
Ωe

(
∂χe

2

∂y2
+1)dy = 6.7×10−3,

while
∫
Ωe

(
∂χe

3

∂y3
+ 1)dy = 1.04 × 10−2. The effective diffusion coefficient in this case is

therefore anisotropic.
∫
Γ
dΓ for this geometry is close to 1.2.

By comparison, a “three-pipe” geometry (section 2.7) of similar ER volume (which
implies that the short edge must be 0.10092) has

∫
Γ
dΓ of 1.09. That is, the more

torturous geometry of Figure 9 expresses the Serca flux over a slightly larger surface

area. The factors
∫
Ωe

(
∂χe

i

∂yi
+ 1)dy are 1.07× 10−2 for each i = 1, 2, 3. Thus, while the

diffusion coefficients ã33 are similar for either geometry, the components ã11, ã22 are
significantly smaller for the more circuitous ER.

Figure 9 suggests that as the path length of the ER increases (while the volume is
kept fixed) the diffusion coefficients in the direction of the curved geometry (ã11, ã22)
will decrease. It would be interesting to prove such a result rigorously.

5.3. Generalization to other expressions for the Serca flux f(cε, eε). In
this paper we have assumed that the flux of calcium transported across the Serca
pumps can be represented by an algebraic expression f(cε, eε). Such an expression
arises, for example, under a suitable quasi-steady-state assumption used to reduce
the reaction rate equations of the enzyme’s kinetics (see, for example, Keener and
Sneyd [5]). To accommodate more general expressions of the flux, however, we can
consider f to be of the form f(cε, eε, ∂cε

∂t ,
∂eε

∂t , X), with dX
dt = Φ(cε, eε, X). That is,
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the boundary conditions (2.2) may instead be written as

Aε ∇cε · nε
c = ελf1

(
cε, eε,

∂cε

∂t
,
∂eε

∂t
,X

)
on Γε,(5.6a)

−Bε ∇eε · nε
e = ελf2

(
cε, eε,

∂cε

∂t
,
∂eε

∂t
,X

)
on Γε,(5.6b)

dX

dt
= Φ(cε, eε, X).(5.6c)

In this case, the results obtained in the paper continue to hold by suitably replac-

ing f(c0, e0) → f
(
c0, e0, ∂c0

∂t ,
∂e0

∂t ,
∫

Φ(c0, e0, X) dt
)
.

6. Appendix. The boundary flux of the Serca pumps in (2.2) is related to the
parameters of the problem as follows:

A∇cε · nε
c = σf(cε, eε) on Γε,

where f(cε, eε) is the flux per unit pump concentration, and σ is the surface density
of the pump protein on Γε. Note that f(·, ·) is independent of the parameter ε of the

geometry. For a periodic cubic cell of length ε, σ is equal to ρV × ε3

σ̃ε2 , where ρV is
the volume density of N pumps distributed in the domain Ω of volume V , and σ̃ is a
shape parameter associated with the surface area of Γ. For example, for the geometry
considered above in section 2.7, σ̃ε2 = 3 × 0.4 ε× 0.9 ε. Thus, taking ρV /σ̃ = λ leads
to (2.2).

In the general case, λ can be taken to vary with x to allow for a nonhomogeneous
spatial distribution of the pump proteins. All of the results obtained in the paper
continue to hold with λ = λ(x).
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ing section 5.3.
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