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Introduction

– Developing methods for analyzing large-scale biochemical reaction networks,
which avoid the requirment of knowledge about all the detailed reaction
kinetics involved in the network, has become a very important problem.
One would like to develop a method which only requires knowledge of the
stoichiometry of the network.

– Metabolic control analysis (MCA) is one such method used to analyze these
large-scale networks.

– Biochemical circuit theory (BCT) is another popular method which includes
flux balance analysis (FBA) and energy balance analysis (EBA).



Metabolic Control Analysis (MCA)

– Analyses properties of metabolic networks by studying the effects of small
variations of enzyme or metabolite concentrations on the steady-state values
of reaction flux J j and metabolite concentrations xi.

– The metabolic networks under consideration consist of:

• M enzymes, E1
, . . . ,EM, each of which converts one or more of the N

metabolites into products.
• Each metabolite, X1, . . . ,XN, is converted by one or more of the enzymes.
• Each reaction involves an enzyme.
• Substrates involved in the first reaction and products of the last reaction

are held at constant concentrations to act as parameters, p1, . . . , pk, within
the model.



Assumptions

– The model is assumed to approach a unique steady state if left alone.

– The rates of a given reaction are proportional to the concentration of the
enzyme which catalyzes that reaction.

υ j ∝ e j
, j = 1, . . . ,M. (1)



Local Elasticity Coefficient

Assume the reaction network is at non-equilibrium steady state (NESS) and
suppose a perturbation, x∗i → x∗i +δxi, occurs. Then

ε j
i =

x∗i
υ j
∗

δυ j

δxi
(2)

is called the local elasticity coefficient of reaction rate j with respect to
metabolite, effector, or enzyme i.



Control Coefficients

Suppose a perturbation, e j
∗ → e j

∗+δe j, occurs. Then

Cxi
j =

e j
∗

x∗i

δxi

δe j
, (3)

CJk

j =
e j
∗

Jk
∗

δJk

δe j
(4)

are called the concentration control coefficient of enzyme j acting on
metabolite i and the flux control coefficient of enzyme j acting on flux k,
respectively.



Homogeneous Functions

A function is homogeneous of degree n in a region R if, and only if, for (x,y) in
R and for every positive value t, f (tx, ty) = tn f (x,y).

Euler provided a theorem about homogeneous functions which states that
if a function f (x,y) is continuous, has a continuous derivative, and is
homogeneous of degree n in a region R then

fx(x,y)x+ fy(x,y)y = n f (x,y). (5)



Homogeneous Functions

A useful modification of Euler’s theorem is that if

f (tu1, . . . , tuk,uk+1, . . . ,ur) = t f (u1, . . . ,ur) (6)

then

f =
k

∑
i=1

ui
∂ f
∂ui

+φ
r

∑
i=k+1

ui
∂ f
∂ui

(7)

which means that arguments k +1 through r can be ignored when applying
Euler’s theorem about homogeneous functions.



Summation Theorems

Under the unique steady-state assumption stated earlier,

M

∑
j=1

Si jυ j(e j
,x′1, . . . ,x

′
N, p1, . . . , pk) = 0, i = 1, . . . ,N (8)

has only one solution at NESS. Call the solution xi(e1
, . . . ,eM

, p1, . . . , pk).

Similarly, yi(te1
, . . . , teM

, p1, . . . , pk) is the solution of

M

∑
j=1

Si jυ j(te j
,y′1, . . . ,y

′
N, p1, . . . , pk) = 0, i = 1, . . . ,N. (9)



CCC Summation Theorem

By assumption, υ j is homogeneous of degree 1 in e j. Therefore, (9) is
equivalent to (8) for all t 6= 0. This means that xi is homogeneous of degree
0 in e1

, . . . ,eM.

e1 δxi

δe1
+ · · ·+ eM δxi

δeM
= 0, (10)

M

∑
j=1

Cxi
j = 0, i = 1, . . . ,N (11)

Equation (11) is known as the summation theorem for concentration control
coefficients.



FCC Summation Theorem

Similarly, one can show that the steady-state flux J j is homogeneous of degree
1 in e1

, . . . ,eM at NESS and derive the summation theorem for flux control
coefficients.

M

∑
i=1

CJ j

i = 1, j = 1, . . . ,M. (12)



Connectivity Theorems

Taking the total differentials at steady-state of υ j, J j, and xi and dividing
through by υ j, J j, and xi, respectively,

dυ j

υ j
=

de j

e j
+

N

∑
i=1

ε j
i
dxi

xi
, (13)

dJ j

J j
= CJ j

1
de1

e1
+ · · ·+CJ j

M
deM

eM
, (14)

dxi

xi
= Cxi

1
de1

e1
+ · · ·+Cxi

M
deM

eM
. (15)



dJ j

J j
= −

N

∑
i=1

[
M

∑
k=1

CJ j

k εk
i ]

dxi

xi
= 0, j = 1, . . . ,M (16)

dxi

xi
= −

N

∑
j=1

[
M

∑
k=1

Cxi
k εk

j]
dx j

x j
, i = 1, . . . ,N, (17)

M

∑
k=1

CJ j

k εk
i = 0, i = 1, . . . ,N, (18)

M

∑
k=1

Cxi
k εk

j = −δi j. (19)

Since Je = 0 implies dJ j = 0. The last two equations are known as the
connectivity theorems for flux control coefficients and concentration control
coefficients, respectively.



Relationship Between BCT and MCT

The basic equations of BCT are

M

∑
j=1

Si jJ
j
∗ = −φext

i , (20)

M

∑
j=1

(∆G j −∆π j
ext)Kji = 0 (21)



If em
∗ → em

∗ +δem then

M

∑
j=1

Si j
δJ j

∗

δem
= 0, (22)

M

∑
m=1

M

∑
j=1

Si jJ
j
∗C

J j

m =
M

∑
j=1

Si jJ
j
∗(

M

∑
m=1

CJ j

m ) = 0, (23)

CJ j

m =
em
∗

J j
∗

δJ j

δem
(24)

which, if there are no external fluxes, implies

M

∑
m=1

CJ j

m = 1. (25)



Research Proposals

MCA provides important insights into large-scale biochemical reaction
networks. However, its relation to nonequilibrium thermodynamics has not
been made clear. There exists a strong parallel within the linear algebra
of BCT and MCT. Developing a unifying representation for these methods
would be very interesting and could strengthen both methods.

Further work could be done in the optimization of these networks by using the
characteristics of the S matrix, by including concentration clamping, and by
finding ways to determine properties such as rate-limiting steps and internal
loops.

It would be interesting to study these networks using topology and graph
theory. Attempts have been made, for example, using Petri nets, but the
nonlinear aspect of reaction networks were not captured. Creating matroid
representations could be beneficial.
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