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Introduction

In 1924, the German biochemist, Otto Warburg, showed that many tumors
relied on glycolysis instead of oxidative phosphorylation, even in the
presence of oxygen (Warburg et al., Biochem. Z, 1924).

More recently, it has been shown that the Warburg effect is linked to
mutations in signaling pathways that govern glucose uptake into cells,
rather than mitochondrial defects (Garber, J. Nat'l. Cancer Inst., 2004).

Activation of the Akt kinase signaling pathway has been shown to stimulate
glucose consumption without affecting the rate of oxidative phosphorylation
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Further Observations

Experiments have shown a 4 to 6-fold increase in glucose uptake in cancer
cells (Thompson et al., Cancer Res., 2004, Ramanathan et al., PNAS,

2005).

It has also been observed that cancer cells create a more acidic
environment, perhaps to help them compete against normal cells so that

they can proliferate.

Whereas most normal cells undergo apoptosis when the hypoxic stress is
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The Law of Mass Action
For a system involving M reactions and N chemical species with ;" reaction

. . £
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kZ

the law of mass action gives
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Open Systems

Starting with the original mass-action kinetics
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J=1

the detailed balance conditions can be broken by flux injection
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Nonequilibrium Thermodynamics
The chemical potential of a species is given by
i = p; + RT In x;,
from which we get the reaction potential, given by
i j

J R, N
klx xy” ... 2y

A/ = RT In
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Turning to Stoichiometric Constraints-Based Approaches

Typically, it is not possible to solve for analytic solutions of the mass-action
models because reaction networks are very large and complex.

There is a limit to the amount of information experimentalists can gather

and, in most cases, it is not possible to obtain detailed kinetic-rate
information.

For these reasons, approaches that rely only on the stoichiometry of a
system, i.e., the static, algebraic structure of biochemical networks, within
which chemical “motion” must take place, have been developed and do not
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Stoichiometric Network Theory

Recall the general mass-action model with flux injection, where

J .3 J Jj J J
Vl 1/2 VN Fu'l 1432 K

dxz )
J N
(6] — ) (K ata? . .x — K ai'zs? . .z )

Mz

Jj=1

We can rewrite the system of equations in matrix form as

dx
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Flux Balance Constraints

In NESS, the concentrations of the chemical species are not changing and we
have

SJ = —Jet,

which is known as the flux balance constraint of FBA. Note that this constraint
Is similar to Kirchoff’s current law of electrical circuit theory.
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Flux Balance Analysis

(Edwards and Palsson, PNAS, 2000)
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Fluxes and Energy Gradients

(Beard et al., Biophys. J., 2002)
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Energy Balance Analysis

Define u € RY as the vector of chemical potentials, then the vector of reaction
potentials, Ap € RM | is given by

STu = Ap.

We can define the nullspace matrix K € RM > =) with columns that form a
basis for the nullspace of S, so that SK = 0. Then we have the constraint
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Relationship Between Reaction Fluxes and Potentials

If we define the nonnegative forward and reverse reaction fluxes so that
J=J, — J_, then the reaction potential is

which leads us directly to the second law of thermodynamics, i.e.,
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The Optimization Problem

' 3.3, J_ J A
334 T A S 2
s.t. ST+ Jt=0
K'Ap =0

diag (eA“/RT) J,-J_=0
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Glycolysis
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Glycolysis and Lactate Dehydrogenase

SIAM ENNUAL MEETING

GLYCOLYSIS
RXN  REACTANTS PRODUCTS
hk GLC + ATP*~ G6P?™ + ADP3~ + HT
pgi G6P*~ F6P2~
pfk F6P2~ + ATP*~ FBP*™ + ADP3~ + H*
pfp F6P?™ + HT + HPO;~ FBP*™ + H,0
ald FBP*~ GAP?~ + DHAP?~
tpi DHAP?~ GAP?~

gapdh  GAP?~ + NADT + HPO?~
pgk 1,3-BPG*~ + ADP3~

alalan » 3_

1,3-BPG* + NADH + HT

3-PGA3~ + ATP*~
D AS—
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TCA Cycle
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Transports and TCA Cycle

TRANSPORTS
RXN REACTANTS PRODUCTS
pmt  PYR™ PYR
gps NADH + H' + FAD,, NAD™ + FADHan,
ant  ADP®~ + ATP:- ADP3~ + ATP*~
pit HT + HPO;~ Ht + HPO;
TCA CYCLE

RXN REACTANTS PRODUCTS

» » a¥A
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Oxidative Phosphorylation
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Oxidative Phosphorylation

OXIDATIVE PHOSPHORYLATION

RXN REACTANTS PRODUCTS
nuo  5H! +NADHy, +Q QHs + NAD: + 4 HT
sdhl FADHym + Q QH, + FAD,

Cyo 6 HY +1 Oy + QH, Q+6H" +HyO

flatp 3 H' + ADP2~ + HPO?~ 2 H} + HyO + ATPA-
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Results

. Reaction Case Species
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Glycolysis
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Pentose Phosphate Pathway
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Pentose Phosphate Pathway

PENTOSE PHOSPHATE PATHWAY

RXN REACTANTS PRODUCTS
g6pd G6P*~ + NADP™  6PdL?” + NADPH + H*
6pgl  6PdL?™ + H,0 6PGL?™ + H™T

6pgd 6PGL?" + NADPT™ Ru5P?~ + NADPH + CO,
r5pi  Ru5P?~ R5P%~

r5pe  Ru5P?™ Xu5P?~

trkl  R5P?™ + Xu5P?~  S7P?™ + GAP?~

tra S7P*~ + GAP?~ E4P%~ + F6P?~

2— 2— + 2—

AP2~ + X
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Results

Case 3 Species

B Reaction

Case 1

hk 1 i} H+
pai 1 i) H+_mi
pik 1 9875 133
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Discussion

Ramanathan et al., PNAS, 2005, suggested that cancer cells use the
mitochondria and oxygen for pyrimidine synthesis rather than ATP
production, i.e., there is a coupling between the nucleotide biosynthesis and
the mitochondrial machinery to achieve the high rates of cell proliferation.

This suggestion was supported by their observations of higher R5P and
orotic acid in cancer cells.
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Conclusions

The classical methods for modeling biochemical networks are limited in
their power. Using stoichiometric constraints-based approaches, we are
able to quantitatively study the possible phenotypes of a system.

This method allows us to study a system on the whole genome scale and
do in silico experiments instead of in vitro or in vivo experiments.

By combining FBA and EBA constraints, we are certain that the feasible
solutions are mass balanced and thermodynamically realistic.
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Conclusions

The glycolytic shift is one way to explain why positron emission tomography
(PET), which uses a radiolabeled glucose analogue to track glucose uptake
by tumors, is so good at picking out malignant and fast-growing tumors
(Garber, J. Nat'l. Cancer Inst., 2004).

New diagnosis strategies can be suggested. For example, one could look
at the ratios of mitochondrial enzymes to glycolytic enzymes (Cuezva et al.,
Cancer Res., 2002; Cuezva et al., Carcinogenesis, 2005).
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